|   | 
Details
   web
Records
Author Banks, R.
Title Variability of Indian Ocean Surface Fluxes Using a New Objective Method Type $loc['typeManuscript']
Year 2006 Publication Abbreviated Journal
Volume Issue Pages
Keywords Indian Ocean Dipole Mode, Indian Ocean, Objective Method, Surface Turbulent Fluxes, Monsoon, Gridded Product
Abstract A new objective technique is used to analyze monthly mean gridded fields of air and sea temperature, scalar and vector wind, specific humidity, sensible and latent heat flux, and wind stress over the Indian Ocean. A variational method produces a 1°x1° gridded product of surface turbulent fluxes and the variables needed to calculate these fluxes. The surface turbulent fluxes are forced to be physically consistent with the other variables. The variational method incorporates a state of the art flux model, which should reduce regional biases in heat and moisture fluxes. The time period is January 1982 to December 2003. The wind vectors are validated through comparison to monthly scatterometer winds. Empirical orthogonal function (EOF) analyses of the annual cycle emphasize significant modes of variability in the Indian Ocean. The dominant monsoon reversal and its connection with the southeast trades are linked in eigenmodes one and two of the surface fluxes. The third eigenmode of latent and sensible heat flux reveal a structure similar to the Indian Ocean Dipole (IOD) mode. The variability in surface fluxes associated with the monsoons and IOD are discussed. September-October-November composites of the surface fluxes during the 1997 positive IOD event and the 1983 negative IOD event are examined. The composites illustrate characteristics of fluxes during different IOD phases.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding NASA, OSU, NOAA, NSF Approved $loc['no']
Call Number COAPS @ mfield @ Serial 621
Permanent link to this record
 

 
Author Nyadjro, E.S.; Jensen, T.G.; Richman, J.G.; Shriver, J.F.
Title On the Relationship Between Wind, SST, and the Thermocline in the Seychelles-Chagos Thermocline Ridge Type $loc['typeJournal Article']
Year 2017 Publication IEEE Geoscience and Remote Sensing Letters Abbreviated Journal IEEE Geosci. Remote Sensing Lett.
Volume 14 Issue 12 Pages 2315-2319
Keywords Altimetry; HYbrid Coordinate Ocean Model (HYCOM); Indian Ocean Dipole (IOD); ocean-atmosphere coupling; Rossby waves; sea surface temperature (SST); thermocline depth; winds
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-598X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 465
Permanent link to this record
 

 
Author Shi, W.
Title Estimation of heat and salt storage variability in the Indian Ocean from TOPEX/Poseidon altimetry Type $loc['typeJournal Article']
Year 2003 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 108 Issue C7 Pages
Keywords heat storage; salt storage; altimetry; TOPEX/Poseidon; Indian Ocean; Indian Ocean dipole
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 844
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)