Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goff, J.A.; Arbic, B.K. url  doi
openurl 
  Title Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness Type $loc['typeJournal Article']
  Year 2010 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 32 Issue 1-2 Pages 36-43  
  Keywords Abyssal hills; Roughness; Prediction; Ocean modeling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 345  
Permanent link to this record
 

 
Author Goto, Y. url  openurl
  Title Improved Vegetation Characterization and Freeze Statistics in a Regional Spectral Model for the Florida Citrus Farming Region Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ensemble Forecast, Climate Model  
  Abstract This study focused on the effective use of a numerical climate model for agriculture in Florida, especially in the citrus farming region of the Florida peninsula, because of the impact of agriculture to Florida's economy. For the analyses of the ensemble, the climate models used in this study were the FSU/COAPS Global Spectral Model and FSU/COAPS Regional Spectral Model (FSU/COAPS RSM) coupled with a land-surface model. The multi-convective scheme method and variable initial conditions were used for the ensembles. Severe freezes impacting agriculture in Florida were associated with some major climate patterns, such as El Niño and Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). In the first part of this study, seasonal ensemble integrations of the regional model were examined for the tendencies of freezes in the Florida peninsula during each ENSO or NAO phase is examined. Mean excess values of minimum temperatures from thresholds on the basis of the Generalized Pareto Distribution (GPD), which represents the extreme data in a dataset, were used to analyze the freezes in the regional model. According to some previous studies, El Niño winters obtain fewer freezes than the other ENSO phases. Although the ensemble comprised only 19 winters, the ensemble found variability patterns in minimum temperatures in each climate phase similar to the findings in the previous studies which were based on the observed data. The FSU/COAPS RSM was coupled with Community Land Model 2.0 (CLM2), to represent the land-surface conditions. Although the coupling improved the temperature forecast of the RSM, it still has a cold bias and simulates smaller diurnal temperature changes than actually occur in southern Florida. Among the prescribed surface data, Leaf Area Index (LAI) for southern Florida in the CLM2 is lower than those observed by MODIS (Moderate Resolution Imaging Spectroradiometer). In the first experiment of this part, the sensitivity of the temperature forecast to the LAI in the climate models was investigated, by modifying the LAI data in the CLM2 based on the monthly MODIS observations. In the second experiment, newly created prescribed datasets of LAI and plant functional types for the CLM2 based on the MODIS observations were applied to the RSM. The substitution increased the diurnal temperature change in southern Florida slightly but almost consistently.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 586  
Permanent link to this record
 

 
Author Gouillon, F url  openurl
  Title Internal Wave Propagation and Numerically Induced Diapycnal Mixing in Oceanic General Circulation Models Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords spurious mixing, numerical modeling, internal wave, tide  
  Abstract Numerical ocean models have become powerful tools for providing a realistic view of the ocean state and for describing ocean processes that are difficult to observe. Recent improvements in model performance focus on simulating realistic ocean interior mixing rates, as ocean mixing is the main physical process that creates water masses and maintains their properties. Below the mixed layer, diapycnal mixing primarily arises from the breaking of internal waves, whose energy is largely supplied by winds and tides. This is particularly true in abyssal regions, where the barotropic tide interacts with rough topography and where high levels of diapycnal mixing have been recorded (e.g., the Hawaiian Archipelago). Many studies have discussed the representation of internal wave generation, propagation, and evolution in ocean numerical models. Expanding on these studies, this work seeks to better understand the representation of internal wave dynamics, energetics, and their associated mixing in several different classes of widely used ocean models (e.g., the HYbrid Coordinate Ocean Model, HYCOM; the Regional Ocean Modeling System, ROMS; and the MIT general circulation model, MITgcm). First, a multi-model study investigates the representation of internal waves for a wide spectrum of numerical choices, such as the horizontal and vertical resolution, the vertical coordinate, and the choice of the numerical advection scheme. Idealized configurations are compared to their corresponding analytical solutions. Some preliminary results of realistic baroclinic tidal simulations are shown for the Gulf of Mexico. Second, the spurious diapycnal mixing that exists in models with fixed vertical coordinates (i.e., geopotential and terrain following) is documented and quantified. This purely numerical error arises because, in fixed-coordinate models, the numerical framework cannot properly maintain the adiabatic properties of an advected water parcel. This unrealistic mixing of water masses can be a source of major error in both regional and global ocean models. We use the tracer flux method to compute the spurious diapycnal diffusivities for both a lockexchange scenario and a propagating internal wave field using all three models. Results for the lock exchange experiments are compared to the results of a recent study. Our results, obtained by using three different model classes, provide a comprehensive analysis of the impact of model resolution choice and numerical framework on the magnitude of the spurious diapycnal mixing and the representation of internal waves.  
  Address Department of Oceanography  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 571  
Permanent link to this record
 

 
Author Griffies, S.M.; Biastoch, A.; Böning, C.; Bryan, F.; Danabasoglu, G.; Chassignet, E.P.; England, M.H.; Gerdes, R.; Haak, H.; Hallberg, R.W.; Hazeleger, W.; Jungclaus, J.; Large, W.G.; Madec, G.; Pirani, A.; Samuels, B.L.; Scheinert, M.; Gupta, A.S.; Severijns, C.A.; Simmons, H.L.; Treguier, A.M.; Winton, M.; Yeager, S.; Yin, J. url  doi
openurl 
  Title Coordinated Ocean-ice Reference Experiments (COREs) Type $loc['typeJournal Article']
  Year 2009 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 26 Issue 1-2 Pages 1-46  
  Keywords Global ocean-ice modelling; Model comparison; Experimental design; Atmospheric forcing; Analysis diagnostics; Circulation stability; World ocean  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 401  
Permanent link to this record
 

 
Author Guimond, S url  openurl
  Title Tropical Cyclone Inner-Core Dynamics: A Latent Heat Retrieval and Its Effects on Intensity and Structure Change; and the Impacts of Effective Diffusion on the Axisymmetrization Process Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Hurricanes, Doppler Radar, Latent Heat, Axisymmetrization, Diffusion, Numerical Modeling  
  Abstract Despite the fact that latent heating in cloud systems drives many atmospheric circulations, including tropical cyclones, little is known of its magnitude and structure due in large part to inadequate observations. In this work, a reasonably high-resolution (2 km), four-dimensional airborne Doppler radar retrieval of the latent heat of condensation is presented for rapidly intensifying Hurricane Guillermo (1997). Several advancements in the retrieval algorithm are shown including: (1) analyzing the scheme within the dynamically consistent framework of a numerical model, (2) identifying algorithm sensitivities through the use of ancillary data sources and (3) developing a precipitation budget storage term parameterization. The determination of the saturation state is shown to be an important part of the algorithm for updrafts of ~ 5 m s-1 or less. The uncertainties in the magnitude of the retrieved heating are dominated by errors in the vertical velocity. Using a combination of error propagation and Monte Carlo uncertainty techniques, biases were found to be small, and randomly distributed errors in the heating magnitude were ~16 % for updrafts greater than 5 m s-1 and ~156 % for updrafts of 1 m s- 1. The impact of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2 km resolution and comparing the generated wind structure to the Doppler radar observations of Guillermo. Results show that using the latent heat retrievals outperforms a simulation that relies on a state-of-the-art microphysics scheme (Reisner and Jeffery 2009), in terms of wind speed root-mean-square errors, explained variance and eye/eyewall structure. The incorrect transport of water vapor (a function of the sub-grid model and the numerical approximations to advection) and the restrictions on the magnitude of heat release that ensure the present model's stability are suggested as sources of error in the simulation without the retrievals. Motivated by the latent heat retrievals, the dynamics of vortex axisymmetrization from the perspective of thermal anomalies is investigated using an idealized, non-linear atmospheric model (HIGRAD). Attempts at reproducing the results of previous work (Nolan and Grasso 2003; NG03) revealed a discrepancy with the impacts of purely asymmetric forcing. While NG03 found that purely asymmetric heating led to a negligible, largely negative impact on the vortex intensification, in the present study the impacts of asymmetries are found to have an important, largely positive role. Absolute angular momentum budgets revealed that the essential difference between the present work and that of NG03 was the existence of a significant, axisymmetric secondary circulation in the basic-state vortex used in the HIGRAD simulations. This secondary circulation was larger than that present in NG03's simulations. The spin-up of the vortex caused by the asymmetric thermal anomalies was dominated by the axisymmetric fluxes of angular momentum at all times, indicating fundamentally different evolution of asymmetries in the presence of radial flow. Radial momentum budgets were performed to elucidate the mechanisms responsible for the formation of the physically significant secondary circulation. Results show that explicit (sub-grid) diffusion in the model was producing a gradient wind imbalance, which drives a radial inflow and associated secondary circulation in an attempt to re-gain balance. In addition, the production of vorticity anomalies from the asymmetric heating was found to be sensitive to the eddy diffusivity, with large differences between HIGRAD and the widely used WRF model for the exact same value of this uncertain parameter.  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 573  
Permanent link to this record
 

 
Author Harris, R.; Pollman, C.; Hutchinson, D.; Landing, W.; Axelrad, D.; Morey, S.L.; Dukhovskoy, D.; Vijayaraghavan, K. url  doi
openurl 
  Title A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 53-63  
  Keywords Animals; Calibration; Environmental Exposure; Fishes/metabolism; Humans; Mercury/*chemistry/metabolism; *Models, Theoretical; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.  
  Address Reed Harris Environmental Ltd., 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23102631 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 234  
Permanent link to this record
 

 
Author Hiester, H.R.; Morey, S.L.; Dukhovskoy, D.S.; Chassignet, E.P.; Kourafalou, V.H.; Hu, C. url  doi
openurl 
  Title A topological approach for quantitative comparisons of ocean model fields to satellite ocean color data Type $loc['typeJournal Article']
  Year 2016 Publication Methods in Oceanography Abbreviated Journal Methods in Oceanography  
  Volume 17 Issue Pages 232-250  
  Keywords Satellite data; Ocean model; Ocean color; Sea surface salinity; Shape comparison; Hausdorff distance  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-1220 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 78  
Permanent link to this record
 

 
Author Hong, S.-Y.; Park, H.; Cheong, H.-B.; Kim, J.-E.E.; Koo, M.-S.; Jang, J.; Ham, S.; Hwang, S.-O.; Park, B.-K.; Chang, E.-C.; Li, H. url  doi
openurl 
  Title The Global/Regional Integrated Model system (GRIMs) Type $loc['typeJournal Article']
  Year 2013 Publication Asia-Pacific Journal of Atmospheric Sciences Abbreviated Journal Asia-Pacific J Atmos Sci  
  Volume 49 Issue 2 Pages 219-243  
  Keywords Numerical weather prediction; seasonal prediction; general circulation model; regional climate modeling; physics; parameterization; climate modeling; GRIMs; WRF  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1976-7633 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 215  
Permanent link to this record
 

 
Author Kirtman, B. P.; Misra, V.; Burgman, R. J.; Infanti, J.; Obeysekera, J. url  doi
openurl 
  Title Florida Climate Variability and Prediction Type $loc['typeBook Chapter']
  Year 2017 Publication Florida's climate: Changes, variations, & impacts Abbreviated Journal  
  Volume Issue Pages 511-532  
  Keywords Multi-model ensembles; Regional climate prediction; Dynamical downscaling; Statistical downscaling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Florida Climate Institute Place of Publication Gainesville, FL Editor Chassignet, E. P.; Jones, J. W.; Misra, V.; Obeysekera, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 850  
Permanent link to this record
 

 
Author Krishnamurti, T.N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R. url  doi
openurl 
  Title A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes Type $loc['typeJournal Article']
  Year 2016 Publication Reviews of Geophysics Abbreviated Journal Rev. Geophys.  
  Volume 54 Issue 2 Pages 336-377  
  Keywords multimodel; superensemble; ensemble mean  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 8755-1209 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 83  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)