|   | 
Details
   web
Records
Author Boisserie, M.; Shin, D.W.; LaRow, T.E.; Cocke, S.
Title Evaluation of soil moisture in the Florida State University climate model-National Center for Atmospheric Research community land model (FSU-CLM) using two reanalyses (R2 and ERA40) and in situ observations Type $loc['typeJournal Article']
Year 2006 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 111 Issue D8 Pages
Keywords land surface models; soil moisture; freezing process
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 709
Permanent link to this record
 

 
Author Cocke, S.; Boisserie, M.; Shin, D.-W.
Title A coupled soil moisture initialization scheme for the FSU/COAPS climate model Type $loc['typeJournal Article']
Year 2013 Publication Inverse Problems in Science and Engineering Abbreviated Journal Inverse Problems in Science and Engineering
Volume 21 Issue 3 Pages 420-437
Keywords soil moisture initialization; data assimilation; precipitation assimilation; nudging; reanalysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1741-5977 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 199
Permanent link to this record
 

 
Author Griffin, J
Title Characterization of Errors in Various Moisture Roughness Length Parameterizations Type $loc['typeManuscript']
Year 2009 Publication Abbreviated Journal
Volume Issue Pages
Keywords Boundary Layer Meteorology, Roughness Length Parameterization, Moisture Roughness Lengths
Abstract Often the parameterization of the moisture roughness length is not seen as being important, as long as the parameterization seems reasonable; that is, it is within the rather considerable bounds of error for the data sets used to determine the parameterization. However, the choice of parameterization does influence height adjustments of humidity and calculations of turbulent heat fluxes. This paper focuses on the calculation of the turbulent heat fluxes using different parameterizations of roughness length. Five roughness length parameterizations are examined herein. These parameterizations include wall theory; the Clayson, Fairall, Curry parameterization; the Liu, Katsaros, Businger parameterization; Zilitinkevich et al. parameterization; and the COARE3.0 parameterization. Turbulent heat fluxes are calculated from each parameterization of the roughness length and are compared to observed turbulent heat flux values. The bulk latent heat flux estimates have a much better signal to noise ratio than the sensible heat fluxes, and are therefore the focus of the comparison to observations. This comparison indicates how to improve the proportionality in the above roughness length parameterizations, which are causing modeled turbulent heat flux magnitudes to be too large in four of the five parameterizations. The modeled turbulent heat fluxes are evaluated again after the modification of the parameterizations. Significant improvements in both the bias and the root mean square error (RMSE) are seen. Three parameterizations see roughly the same improvements of around 17Wm^-2 in the bias and roughly 10Wm^-2 in the RMSE. The largest improvements are in the Liu, Katsaros, Businger parameterization with bias improvements of over 45Wm^-2 and a RMSE reduction of nearly 32Wm^-2.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 603
Permanent link to this record
 

 
Author Liu, Y.; Tan, Z.-M.; Wu, Z.
Title Noninstantaneous Wave-CISK for the Interaction between Convective Heating and Low-Level Moisture Convergence in the Tropics Type $loc['typeJournal Article']
Year 2019 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.
Volume 76 Issue 7 Pages 2083-2101
Keywords Convection; Diabatic heating; Moisture; moisture budget
Abstract The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture-convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation-consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4928 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1065
Permanent link to this record
 

 
Author Pantina, P
Title Characterizing the Variability of the Indian Monsoon: Changes in Evaporative Sources for Summertime Rainfall Events Type $loc['typeManuscript']
Year 2010 Publication Abbreviated Journal
Volume Issue Pages
Keywords Variability, Trajectories, India, Monsoon, Evaporative Source, Moisture Source
Abstract This study focuses on the interannual and intraseasonal variability of evaporative sources for rainfall events during the Indian monsoon. The monsoon is an important part of the economy and lifestyle in India, thus, any improvements in our understanding of its mechanisms would be directly beneficial to society. We first discuss the use of evaporative sources for rainfall events as an important tool to help increase our knowledge of the variations of the monsoon. We then outline the variability of the monsoon on an interannual (wet and dry years) and intraseasonal (active and break periods) time scale. We use three reanalyses (NCEP-R2, CFSR, and MERRA) and an IMD gridded rainfall dataset to trace the location and strength of evaporative sources via a quasi-isentropic back trajectory program. The program uses reanalysis winds and evaporation, among other parameters, to estimate these sources back in time. We discuss the differences in parameters between the datasets on a seasonal, interannual, and intraseasonal time scale. We then thoroughly investigate the strength and location of evaporative sources between datasets on interannual and intraseasonal time scales, and we attempt to explain the variations by analyzing the differences in the input parameters and circulation mechanisms themselves. The study finds that the evaporative sources for given interannual or intraseasonal rainfall events do vary in strength and location. Interannually, the strongest change in evaporative source occurs over central India and the Arabian Sea, suggesting that the overall monsoon flow contributes moisture for Indian rainfall on this time scale. Intraseasonally, the strongest change in evaporative source occurs over the Bay of Bengal, suggesting that low pressure systems contribute moisture for Indian rainfall on this time scale. All three reanalyses yield similar fields of evaporative source. We conclude that accurate prediction of the Indian monsoon requires improved understanding of both interannual and intraseasonal oscillations since the sources of moisture for these events are unique.
Address Department of Earth Ocean and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 577
Permanent link to this record
 

 
Author Swearingen, A. D.
Title Examining Shifts in Warm-Season Near-Surface Moisture Trends in Florida Type $loc['typeManuscript']
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Florida; Surface dew points; Atmospheric moisture
Abstract
Address Department of Earth, Ocean, and Atmospheric Science
Corporate Author Thesis $loc['Bachelor's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 115
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)