|   | 
Details
   web
Records
Author Li, H.; Kanamitsu, M.; Hong, S.-Y.; Yoshimura, K.; Cayan, D.R.; Misra, V.
Title A high-resolution ocean-atmosphere coupled downscaling of the present climate over California Type $loc['typeJournal Article']
Year 2014 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 42 Issue 3-4 Pages 701-714
Keywords Regional climate; Coupled model; Ocean-atmosphere interaction; CCSM3; RSM; ROMS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 136
Permanent link to this record
 

 
Author Chen, X.; Zhang, Y.; Zhang, M.; Feng, Y.; Wu, Z.; Qiao, F.; Huang, N.E.
Title Intercomparison between observed and simulated variability in global ocean heat content using empirical mode decomposition, part I: modulated annual cycle Type $loc['typeJournal Article']
Year 2013 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 41 Issue 11-12 Pages 2797-2815
Keywords Ocean heat content; Modulated annual cycle; Empirical mode decomposition; Instantaneous frequency; Instantaneous amplitude; CMIP3
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 209
Permanent link to this record
 

 
Author Subrahmanyam, B.; Murty, V.S.N.; Sharp, R.J.; O'Brien, J.J.
Title Air-sea Coupling During the Tropical Cyclones in the Indian Ocean: A Case Study Using Satellite Observations Type $loc['typeJournal Article']
Year 2005 Publication Pure and Applied Geophysics Abbreviated Journal Pure appl. geophys.
Volume 162 Issue 8-9 Pages 1643-1672
Keywords tropical cyclones; Indian Ocean; EOL; OLR; sea-surface salinity; mixed layer depth; Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-4553 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 452
Permanent link to this record
 

 
Author Choi, K.-Y.; Vecchi, G.A.; Wittenberg, A.T.
Title ENSO Transition, Duration, and Amplitude Asymmetries: Role of the Nonlinear Wind Stress Coupling in a Conceptual Model Type $loc['typeJournal Article']
Year 2013 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 26 Issue 23 Pages 9462-9476
Keywords Atmosphere-ocean interaction; ENSO; Numerical analysis/modeling; Southern Oscillation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 210
Permanent link to this record
 

 
Author Perrie, W.; Zhang, W.; Bourassa, M.; Shen, H.; Vachon, P.W.
Title Impact of Satellite Winds on Marine Wind Simulations Type $loc['typeJournal Article']
Year 2008 Publication Weather and Forecasting Abbreviated Journal Wea. Forecasting
Volume 23 Issue 2 Pages 290-303
Keywords Satellite observations; Data assimilation; Hurricanes; Waves, oceanic; Ocean modeling; Numerical analysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0882-8156 ISBN Medium
Area Expedition Conference
Funding NASA, OVWST Approved $loc['no']
Call Number COAPS @ mfield @ Serial 680
Permanent link to this record
 

 
Author Nielsen, E.R.; Schumacher, R.S.; Keclik, A.M.
Title The Effect of the Balcones Escarpment on Three Cases of Extreme Precipitation in Central Texas Type $loc['typeJournal Article']
Year 2016 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.
Volume 144 Issue 1 Pages 119-138
Keywords Circulation/ Dynamics; Orographic effects; Atm/Ocean Structure/ Phenomena; Flood events; Physical Meteorology and Climatology; Hydrometeorology; Forecasting; Ensembles; Numerical weather prediction/forecasting
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-0644 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 102
Permanent link to this record
 

 
Author Smith, S.R.; Briggs, K.; Lopez, N.; Kourafalou, V.
Title Applying Automated Underway Ship Observations to Numerical Model Evaluation Type $loc['typeJournal Article']
Year 2016 Publication Journal of Atmospheric and Oceanic Technology Abbreviated Journal J. Atmos. Oceanic Technol.
Volume 33 Issue 3 Pages 409-428
Keywords Ship observations; Automatic weather stations; Ocean models; Model evaluation/performance; In situ atmospheric observations; Observational techniques and algorithms; Models and modeling; In situ oceanic observations
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0739-0572 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 53
Permanent link to this record
 

 
Author Steffen, J.; Bourassa, M.
Title Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 48 Issue 9 Pages 1951-1968
Keywords SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC
Abstract The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 970
Permanent link to this record
 

 
Author Xu, X.; Rhines, P.B.; Chassignet, E.P.
Title On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 48 Issue 10 Pages 2233-2258
Keywords Atmosphere-ocean interaction; Boundary currents; Diapycnal mixing; Fronts; Thermocline circulation
Abstract Diapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly focused on the transformation that is forced by surface buoyancy fluxes, and the role of interior mixing is much less known. This study maps the three-dimensional structure of the diapycnal transformation, both surface forced and mixing induced, using results of a high-resolution numerical model that have been shown to represent the large-scale structure of the AMOC and the North Atlantic subpolar/subtropical gyres well. The analyses show that 1) annual mean transformation takes place seamlessly from the subtropical to the subpolar North Atlantic following the surface buoyancy loss along the northward-flowing upper AMOC limb; 2) mixing, including wintertime convection and warm-season restratification by mesoscale eddies in the mixed layer and submixed layer diapycnal mixing, drives transformations of (i) Subtropical Mode Water in the southern part of the subtropical gyre and (ii) Labrador Sea Water in the Labrador Sea and on its southward path in the western Newfoundland Basin; and 3) patterns of diapycnal transformations toward lighter and denser water do not align zonally�the net three-dimensional transformation is significantly stronger than the zonally integrated, two-dimensional AMOC streamfunction (50% in the southern subtropical North Atlantic and 60% in the western subpolar North Atlantic).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 951
Permanent link to this record
 

 
Author Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J.
Title Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 48 Issue 6 Pages 1409-1431
Keywords Baroclinic flows; Internal waves; Nonlinear dynamics; Ocean dynamics; Baroclinic models; Ocean models
Abstract The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%�10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 976
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)