Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xu, X.; Rhines, P.B.; Chassignet, E.P.; Schmitz Jr., W.J. url  doi
openurl 
  Title Spreading of Denmark Strait Overflow Water in the Western Subpolar North Atlantic: Insights from Eddy-Resolving Simulations with a Passive Tracer Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 45 Issue 12 Pages 2913-2932  
  Keywords Circulation/ Dynamics; Abyssal circulation; Boundary currents; Ocean circulation; Ocean dynamics; Potential vorticity; Topographic effects  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 116  
Permanent link to this record
 

 
Author Yu, L.; Jin, X. url  doi
openurl 
  Title Buoy perspective of a high-resolution global ocean vector wind analysis constructed from passive radiometers and active scatterometers (1987-present) Type $loc['typeJournal Article']
  Year 2012 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.  
  Volume 117 Issue C11 Pages  
  Keywords OAFlux; ocean vector; satellite-based; wind analysis  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 272  
Permanent link to this record
 

 
Author Yu, L.; Jin, X. url  doi
openurl 
  Title Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward Type $loc['typeJournal Article']
  Year 2014 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 119 Issue 10 Pages 6842-6862  
  Keywords remote sensing of ocean surface winds; scatterometer; passive microwave radiometer; error analysis  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 172  
Permanent link to this record
 

 
Author Yu, L.; Jin, X. url  doi
openurl 
  Title Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward) Type $loc['typeJournal Article']
  Year 2014 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 119 Issue 8 Pages 5244-5269  
  Keywords remote sensing; climate record of ocean surface vector wind; scatterometer; passive microwave radiometer; mesoscale air-sea interaction  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 173  
Permanent link to this record
 

 
Author Yu, P url  openurl
  Title Development of New Techniques for Assimilating Satellite Altimetry Data into Ocean Models Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Data Assimilation, Reduced Space, First Baroclinic Mode, Ocean Models, Vertical Normal Mode Decomposition, Variational  
  Abstract State of the art fully three-dimensional ocean models are very computationally expensive and their adjoints are even more resource intensive. However, many features of interest are approximated by the first baroclinic mode over much of the ocean, especially in the lower and mid latitude regions. Based on this dynamical feature, a new type of data assimilation scheme to assimilate sea surface height (SSH) data, a reduced-space adjoint technique, is developed and implemented with a three-dimensional model using vertical normal mode decomposition. The technique is tested with the Navy Coastal Ocean Model (NCOM) configured to simulate the Gulf of Mexico. The assimilation procedure works by minimizing the cost function, which generalizes the misfit between the observations and their counterpart model variables. The “forward” model is integrated for the period during which the data are assimilated. Vertical normal mode decomposition retrieves the first baroclinic mode, and the data misfit between the model outputs and observations is calculated. Adjoint equations based on a one-active-layer reduced gravity model, which approximates the first baroclinic mode, are integrated backward in time to get the gradient of the cost function with respect to the control variables (velocity and SSH of the first baroclinic mode). The gradient is input to an optimization algorithm (the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used for the cases presented here) to determine the new first baroclinic mode velocity and SSH fields, which are used to update the forward model variables at the initial time. Two main issues in the area of ocean data assimilation are addressed: 1. How can information provided only at the sea surface be transferred dynamically into deep layers? 2. How can information provided only locally, in limited oceanic regions, be horizontally transferred to ocean areas far away from the data-dense regions, but dynamically connected to it? The first problem is solved by the use of vertical normal mode decomposition, through which the vertical dependence of model variables is obtained. Analyses show that the first baroclinic mode SSH represents the full SSH field very closely in the model test domain, with a correlation of 93% in one of the experiments. One common way to solve the second issue is to lengthen the assimilation window in order to allow the dynamic model to propagate information to the data-sparse regions. However, this dramatically increases the computational cost, since many oceanic features move very slowly. An alternative solution to this is developed using a mapping method based on complex empirical orthogonal functions (EOF), which utilizes data from a much longer period than the assimilation cycle and deals with the information in space and time simultaneously. This method is applied to map satellite altimeter data from the ground track observation locations and times onto a regular spatial and temporal grid. Three different experiments are designed for testing the assimilation technique: two experiments assimilate SSH data produced from a model run to evaluate the method, and in the last experiment the technique is applied to TOPEX/Poseidon and Jason-1 altimeter data. The assimilation procedure converges in all experiments and reduces the error in the model fields. Since the adjoint, or “backward”, model is two-dimensional, the method is much more computationally efficient than if it were to use a fully three-dimensional backward model.  
  Address Department of Oceanography  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NSF, ONR, NASA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 589  
Permanent link to this record
 

 
Author Yu, P.; Morey, S.L.; O'Brien, J.J. url  doi
openurl 
  Title A reduced-dynamics variational approach for the assimilation of altimeter data into eddy-resolving ocean models Type $loc['typeJournal Article']
  Year 2009 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 27 Issue 3-4 Pages 215-229  
  Keywords Ocean modeling; Data assimilation; Variational adjoint methods  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 400  
Permanent link to this record
 

 
Author Zavala-Hidalgo, J.; Romero-Centeno, R.; Mateos-Jasso, A.; Morey, S.L.; Martínez-López, B. url  doi
openurl 
  Title The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Type $loc['typeJournal Article']
  Year 2014 Publication Atmósfera Abbreviated Journal Atmósfera  
  Volume 27 Issue 3 Pages 317-334  
  Keywords Gulf of Mexico; ocean surface forcing; upper ocean layer  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0187-6236 ISBN Medium  
  Area Expedition Conference  
  Funding BP/Gulf of Mexico Research Initiative, NASA/OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 153  
Permanent link to this record
 

 
Author Zhang, M.; Wu, Z.; Qiao, F. url  doi
openurl 
  Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 20 Pages 8541-8555  
  Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC  
  Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 950  
Permanent link to this record
 

 
Author Zhao, X.; Zhou, C.; Xu, X.; Ye, R.; Tian, J.; Zhao, W. url  openurl
  Title Deep Circulation in the South China Sea Simulated in a Regional Model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Sci. Discuss Abbreviated Journal Ocean Sci. Discuss  
  Volume Issue Pages  
  Keywords Sea Marine, Oceanography/CIMST, PacificOcean, continuous current-meter, deep circulation, deep western boundary  
  Abstract The South China Sea (SCS) is the largest marginal sea in the northwest Pacific Ocean. In this study, deep circulation in the SCS is investigated using results from eddy-resolving, regional simulations using the Hybrid Coordinate Ocean Model (HYCOM) verified by continuous current-meter observations. Analysis of these results provides a detailed spatial structure and temporal variability of the deep circulation in the SCS. The major features of the SCS deep circulation are a basin-scale cyclonic gyre and a concentrated deep western boundary current (DWBC). Transport of the DWBC is ∼ 2 Sv at 16.5° N with a width of ∼53 km. Flowing southwestward, the narrow DWBC becomes weaker with a wider range. The model results reveal the existence of 80- to 120-day oscillation in the deep northeastern circulation and the DWBC, which are also the areas with elevated eddy kinetic energy. This intraseasonal oscillation propagates northwestward with a velocity amplitude of ∼ 1.0 to 1.5 cm s-1. The distribution of mixing parameters in the deep SCS plays a role in both spatial structure and volume transport of the deep circulation. Compared with the northern shelf of the SCS with the Luzon Strait, deep circulation in the SCS is more sensitive to the large vertical mixing parameters of the Zhongsha Island Chain area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1013  
Permanent link to this record
 

 
Author Zheng, Y.; Bourassa, M. A.; Dukhovskoy, D. S. url  openurl
  Title Upper-Ocean Processes Controlling the Sea Surface Temperature in the Western Gulf of Mexico Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 4299 General or miscellaneous, OCEANOGRAPHY: GENERAL  
  Abstract This study examines the upper-ocean processes controlling the mixed layer temperature in the western Gulf of Mexico (GOM) through estimating the contributing terms in the heat equation, with an emphasis on eddies' role. The major heat contributing terms for the upper GOM were estimated using two ocean reanalysis datasets: an eddy-resolving HYbrid Coordinate Ocean Model (HYCOM) and a Simple Ocean Data Assimilation (SODA). Analysis of net surface heat fluxes from four datasets reveals that the long-term mean net surface heat flux cools the northern GOM and warms the southern GOM. Two regions are focused for analysis: an eddy-rich region where LCEs are energetic, and the southwestern Gulf where eddy activity is relatively weak and the features of near surface temperature differ from the eddy-rich region. An eddy-rich region in the western GOM is defined based on the eddy kinetic energy derived from satellite sea surface heights. The long-term mean horizontal heat advection causes a weak warming over most of the eddy rich region, partly attributed to the flow-temperature configuration that the long-term and seasonally mean flow is nearly parallel to the corresponding mean isotherms. By contrast, the temporal mean vertical heat advection causes a strong warming in the eddy rich region, partly balancing the cooling caused by net surface heat flux. The temporal mean eddy heat flux convergence in the western GOM, whose positive and negative values are not small at some locations, appears heterogeneous in space, resulting in a small term for the western GOM when area averaged. The persistent warm water in the southwestern Gulf is primarily caused by the net warming from net surface heat flux rather than from eddies and heat advection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1007  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)