Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. url  doi
openurl 
  Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Climate Abbreviated Journal Climate  
  Volume 6 Issue 3 Pages 71  
  Keywords ocean heat content; tropical cyclone heat potential; dominant modes; North Indian Ocean; SUMMER MONSOON; INTENSIFICATION; INTENSITY; PACIFIC  
  Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean-atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus farparticularly in the North Indian Ocean (NIO)has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998-2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2225-1154 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 986  
Permanent link to this record
 

 
Author (up) Hu, Z.-Z.; Huang, B.; Kinter, J.L.; Wu, Z.; Kumar, A. url  doi
openurl 
  Title Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations Type $loc['typeJournal Article']
  Year 2012 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 38 Issue 1-2 Pages 25-43  
  Keywords Stratospheric QBO; Tropical Pacific SST; Interdecadal variation; Walker circulation; Tropical deep convection; ERA40 and NCEP/NCAR reanalyses; ENSO  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 260  
Permanent link to this record
 

 
Author (up) Huang, B.; Hu, Z.-Z.; Kinter, J.L.; Wu, Z.; Kumar, A. url  doi
openurl 
  Title Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle Type $loc['typeJournal Article']
  Year 2012 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 38 Issue 1-2 Pages 1-23  
  Keywords Stratospheric QBO; Tropical Pacific SST; Walker circulation; Deep convection; Atmospheric stability; ERA40 and NCEP/NCAR reanalyses  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 259  
Permanent link to this record
 

 
Author (up) Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R. url  doi
openurl 
  Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 14-25  
  Keywords CALIFORNIA CURRENT ECOSYSTEM; OCEAN CARBON-CYCLE; COASTAL WATERS; FRONTAL ZONE; TIME-SERIES; FLUX; SINKING; SEA; PACIFIC; ZOOPLANKTON  
  Abstract Estimating interannual variability in carbon export is a key goal of many marine biogeochemical studies. However, due to variations in export mechanisms between regions, generalized models used to estimate global patterns in export often fail when used for intra-regional analysis. We present here a region-specific model of export production for the California Current Ecosystem (CCE) parameterized using intensive Lagrangian process studies conducted during El Niño-Southern Oscillation (ENSO) warm and neutral phases by the CCE Long-Term Ecological Research (LTER) program. We find that, contrary to expectations from prominent global algorithms, export efficiency (e-ratio = export / primary productivity) is positively correlated with temperature and negatively correlated with net primary productivity (NPP). We attribute these results to the substantial horizontal advection found within the region, and verify this assumption by using a Lagrangian particle tracking model to estimate water mass age. We further suggest that sinking particles in the CCE are comprised of a recently-produced, rapidly-sinking component (likely mesozooplankton fecal pellets) and a longer-lived, slowly-sinking component that is likely advected long distances prior to export. We determine a new algorithm for estimating particle export in the CCE from NPP (Export = 0.08 · NPP + 72 mg C m-2 d-1). We apply this algorithm to a two-decade long time series of NPP in the CCE to estimate spatial and interannual variability across multiple ENSO phases. Reduced export during the warm anomaly of 2014-2015 and El Niño 2015-2016 resulted primarily from decreased export in the coastal upwelling region of the CCE; the oligotrophic offshore region exhibited comparatively low seasonal and interannual variability in flux. The model resolves intra-regional patterns of in situ export measurements, and provides a valuable contrast to global export models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 984  
Permanent link to this record
 

 
Author (up) Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R. url  doi
openurl 
  Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 14-25  
  Keywords california current ecosystem; coastal waters; flux; frontal zone; ocean carbon-cycle; oceanography; pacific; sea; sinking; time-series; Zooplankton  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1022  
Permanent link to this record
 

 
Author (up) Kim, D.; Lee, S.-K.; Lopez, H.; Foltz, G.R.; Misra, V.; Kumar, A. url  doi
openurl 
  Title On the Role of Pacific-Atlantic SST Contrast and Associated Caribbean Sea Convection in August-October U.S. Regional Rainfall Variability Type $loc['typeJournal Article']
  Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 47 Issue 11 Pages  
  Keywords Pacific‐ Atlantic SST interaction; Atlantic Warm pool; Caribbean Sea; U.S. precipitation  
  Abstract This study investigates the large‐scale atmospheric processes that lead to U.S. precipitation variability in late summer to midfall (August–October; ASO) and shows that the well‐recognized relationship between North Atlantic Subtropical High and U.S. precipitation in peak summer (June–August) significantly weakens in ASO. The working hypothesis derived from our analysis is that in ASO convective activity in the Caribbean Sea, modulated by the tropical Pacific‐Atlantic sea surface temperature (SST) anomaly contrast, directly influences the North American Low‐Level Jet and thus U.S. precipitation east of the Rockies, through a Gill‐type response. This hypothesis derived from observations is strongly supported by a long‐term climate model simulation and by a linear baroclinic atmospheric model with prescribed diabatic forcings in the Caribbean Sea. This study integrates key findings from previous studies and advances a consistent physical rationale that links the Pacific‐Atlantic SST anomaly contrast, Caribbean Sea convective activity, and U.S. rainfall in ASO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1110  
Permanent link to this record
 

 
Author (up) Lu, J.; Hu, A.; Zeng, Z. url  doi
openurl 
  Title On the possible interaction between internal climate variability and forced climate change Type $loc['typeJournal Article']
  Year 2014 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 41 Issue 8 Pages 2962-2970  
  Keywords climate variability; forced climate change; global warming hiatus; Atlantic Multidecadal Variability (AMV); Pacific Decadal Oscillation (PDO)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 138  
Permanent link to this record
 

 
Author (up) Misra, V.; DiNapoli, S.M.; Bastola, S. url  doi
openurl 
  Title Dynamic downscaling of the twentieth-century reanalysis over the southeastern United States Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 15-23  
  Keywords Atlantic multi-decadal oscillation; Hurricanes; Pacific Decadal Oscillation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 190  
Permanent link to this record
 

 
Author (up) Moroni, D. F. url  openurl
  Title Global and Regional Diagnostic Comparison of Air-Sea Flux Parameterizations during Episodic Events Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Parameterizations, Parameterization, Algorithm, Probability Density, Probability Distribution, Pdf, Drake Passage, Kuroshio, Gulf Stream Ect, Cold Tongue, Indian Ocean, Pacific Ocean, Southern Oceans, Atlantic Ocean, Tropics, Sea-State  
  Abstract Twenty turbulent flux parameterizations are compared globally and regionally with a focus on the differences associated with episodic events. The regional focus is primarily upon the Gulf Stream and Drake Passage, as these two regions contain vastly different physical characteristics related to storm and frontal passages, varieties of sea-states, and atmospheric stability conditions. These turbulent flux parameterizations are comprised of six stress-related parameterizations [i.e., Large and Pond (1981), Large et al. (1994), Smith (1988), HEXOS (Smith et al. 1992, 1996), Taylor and Yelland (2001), and Bourassa (2006)] which are paired with a choice of three atmospheric stability parameterizations ['Neutral' assumption, Businger-Dyer (Businger 1966, Dyer 1967, Businger et al. 1971, and Dyer 1974) relations, and Beljaars-Holtslag (1991) with Benoit (1977)]. Two remaining turbulent flux algorithms are COARE version 3 (Fairall et al. 2003) and Kara et al. (2005), where Kara et al. is a polynomial curve fit approximation to COARE; these have their own separate stability considerations. The following data sets were used as a common input for parameterization: Coordinated Ocean Reference Experiment version 1.0, Reynolds daily SST, and NOAA WaveWatch III. The overlapping time period for these data sets is an eight year period (1997 through 2004). Four turbulent flux diagnostics (latent heat flux, sensible heat flux, stress, curl of the stress) are computed using the above parameterizations and analyzed by way of probability distribution functions (PDFs) and RMS analyses. The differences in modeled flux consistency are shown to vary by region and season. Modeled flux consistency is determined both qualitatively (using PDF diagrams) and quantitatively (using RMS differences), where the best consistencies are found during near-neutral atmospheric stratification. Drake Passage shows the least sensitivity (in terms of the change in the tails of PDFs) to seasonal change. Specific flux diagnostics show varying degrees of consistency between stability parameterizations. For example, the Gulf Stream's latent heat flux estimates are the most inconsistent (compared to any other flux diagnostic) during episodic and non-neutral conditions. In all stability conditions, stress and the curl of stress are the most consistent modeled flux diagnostics. Sea-state is also a very important source of modeled flux inconsistencies during episodic events for both regions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 609  
Permanent link to this record
 

 
Author (up) Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. url  doi
openurl 
  Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 52-62  
  Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system KeyWords Plus:ZOOPLANKTON FECAL PELLETS; NORTH PACIFIC-OCEAN; CURRENT SYSTEM; SOUTHERN CALIFORNIA; UNDERWATER GLIDERS; CARBON EXPORT; ZONE; CHLOROPHYLL; STABILITY; EQUATIONS  
  Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 983  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)