Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hilburn, K.A. url  doi
openurl 
  Title Development of scatterometer-derived surface pressures for the Southern Ocean Type $loc['typeJournal Article']
  Year 2003 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 108 Issue C7 Pages  
  Keywords scatterometer; surface pressure; variational techniques; Southern Ocean; SeaWinds; QuikSCAT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding NASA, NOAA, ONR Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 477  
Permanent link to this record
 

 
Author Hite, M. M. url  openurl
  Title Vorticity-Based Detection of Tropical Cyclogenesis Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Quikscat, Seawinds, Tropical Disturbance, Tropical Cyclogenesis, Vorticity  
  Abstract Ocean wind vectors from the SeaWinds scatterometer on QuikSCAT and GOES imagery are used to develop an objective technique that can detect and monitor tropical disturbances associated with the early stages of tropical cyclogenesis in the Atlantic basin. The technique is based on identification of surface vorticity and wind speed signatures that exceed certain threshold magnitudes, with vorticity averaged over an appropriate spatial scale. The threshold values applied herein are determined from the precursors of 15 tropical cyclones during the 1999-2004 Atlantic hurricane seasons using research-quality QuikSCAT data. Tropical disturbances are found for these cases within a range of 19 hours to 101 hours before classification as tropical cyclones by the National Hurricane Center (NHC). The 15 cases are further subdivided based upon their origination source (i.e., easterly wave, upper-level cut-off low, stagnant frontal zone, etc). Primary focus centers on the cases associated with tropical waves, since these waves account for approximately 63% of all Atlantic tropical cyclones. The detection technique illustrates the ability to track these tropical disturbances from near the coast of Africa. Analysis of the pre-tropical cyclone (TC) tracks for these cases depict stages, related to wind speed and precipitation, in the evolution of an easterly wave to tropical cyclone.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 616  
Permanent link to this record
 

 
Author Maue, R. N. url  openurl
  Title Evolution of Frontal Structure Associated with Extratropical Transitioning Hurricanes Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Extratropical Transition, Frontogenesis, Fronts, Quikscat, Cyclone Lifecycles, Warm Seclusion, Frontal Fracture, Potential Vorticity, Hurricane Kate, Hurricane Irene, Hurricane Fabian, Tropical Cyclones  
  Abstract Many tropical cyclones move poleward, encounter vertical shear associated with the midlatitude circulation, and undergo a process called extratropical transition (ET). One of the many factors affecting the post-transition extratropical storm in terms of reintensification, frontal structure, and overall evolution is the upper-level flow pattern. Schultz et al. (1998) categorized extratropical cyclones according to two of the many possible cyclone paradigms in terms of the upper-level trough configuration: The Norwegian cyclone model (Bjerknes and Solberg 1922) associated with high-amplitude diffluent trough flow and the Shapiro-Keyser cyclone lifecycle (1990) with low-amplitude confluent troughs. Broadly speaking, the former category is associated with a strong, meridionally oriented cold front with a weak warm front while the latter lifecycle usually entails a prominent, zonally oriented warm front. However, as will be shown, simple antipode lifecycle definitions fail to capture hybrid or cross-lifecycle evolution of transitioned tropical cyclones. To exemplify the importance upper-level features such as jet streaks and troughs, a potential vorticity framework is coupled with vector frontogenesis functions to diagnose the interaction between the poleward transitioning cyclone and the midlatitude circulation. Particular focus is concentrated upon the evolution and strength of frontal fracture from both a PV and frontogenesis viewpoint. The final outcome of extratropical transition is highly variable depending on characteristics of the tropical cyclone, SSTs, and environmental factors such as strength of vertical shear. Here, three storms (Irene 1999, Fabian 2003, and Kate 2003) typify the inherent variability of one such ET outcome, warm seclusion. Very strong winds are often observed in excess of 50 ms-1 along the southwestern flank of the storm down the bent-back warm front. The low-level wind field kinematics are examined using vector frontogenesis functions and QuikSCAT winds. A complex empirical orthogonal function (CEOF) technique is adapted to temporally interpolate ECMWF model fields (T, MSLP) to overpass times of the scatterometer, an improvement over simple linear interpolation. Overall, the above diagnosis is used to support a hypothesis concerning the prevalence of hurricane-force winds surrounding secluded systems.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 625  
Permanent link to this record
 

 
Author May, J url  openurl
  Title Quantifying Variance Due to Temporal and Spatial Difference Between Ship and Satellite Winds Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords QuikSCAT, Winds, SAMOS, Error variance, Collocation  
  Abstract Ocean vector winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite can be validated with in situ data. Ideally the comparison in situ data would be collocated in both time and space to the satellite overpass; however, this is rarely the case because of the time sampling interval of the in situ data and the sparseness of data. To compensate for the lack of ideal collocations, in situ data that are within a certain time and space range of the satellite overpass are used for comparisons. To determine the total amount of random observational error, additional uncertainty from the temporal and spatial difference must be considered along with the uncertainty associated with the data sets. The purpose of this study is to quantify the amount of error associated with the two data sets, as well as the amount of error associated with the temporal and/or spatial difference between two observations. The variance associated with a temporal difference between two observations is initially examined in an idealized case that includes only Shipboard Automated Meteorological and Oceanographic System (SAMOS) one-minute data. Temporal differences can be translated into spatial differences by using Taylor's hypothesis. The results show that as the time difference increases, the amount of variance increases. Higher wind speeds are also associated with a larger amount of variance. Collocated SeaWinds and SAMOS observations are used to determine the total variance associated with a temporal (equivalent) difference from 0 to 60 minutes. If the combined temporal and spatial difference is less than 25 minutes (equivalent), the variance associated with the temporal and spatial difference is offset by the observational errors, which are approximately 1.0 m2s-2 for wind speeds between 4 and 7 ms-1 and approximately 1.5 m2s-2 for wind speeds between 7 and 12 ms-1. If the combined temporal and spatial difference is greater than 25 minutes (equivalent), then the variance associated with the temporal and spatial difference is no longer offset by the variance associated with observational error in the data sets; therefore, the total variance gradually increases as the time difference increases.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 575  
Permanent link to this record
 

 
Author Paget, A.C.; Bourassa, M.A.; Anguelova, M.D. url  doi
openurl 
  Title Comparing in situ and satellite-based parameterizations of oceanic whitecaps Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 120 Issue 4 Pages 2826-2843  
  Keywords whitecap fraction; foam fraction; whitecap coverage; breaking waves; actively breaking waves; air-sea interaction processes; in situ whitecap observations scatterometers; QuikSCAT; WindSat; microwave radiometry; passive remote sensing; satellite oceanography  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 108  
Permanent link to this record
 

 
Author Stewart, M. L. url  openurl
  Title Cyclogenesis and Tropical Transition in Frontal Zones Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Noel(2001), Gaston(2004), Front, QuikSCAT, Peter(2003), Tropical Transition  
  Abstract Tropical cyclones can form from many different precursors, including baroclinic systems. The process of an extratropical system evolving into a warm core tropical cyclone is defined by Davis and Bosart (2004) as a Tropical Transition (TT) with further classification of systems into Weak Extratropical Cylclones (WEC) and Strong Extratropical Cyclones (SEC). It is difficult to predict which systems will make the transition and which will not, but the description of a common type of TT occurring along a front will aid forecasters in identifying systems that might undergo TT. A wind speed and SST relationship thought to be necessary for this type of transition is discussed. QuikSCAT and other satellite data are used to locate TT cases forming along fronts and track their transformation into tropical systems. Frontal TT is identified as a subset of SEC TT and the evolution from a frontal wave to a tropical system is described in five stages. A frontal wave with stronger northerly wind and weaker southerly wind is the first stage in the frontal cyclogenesis. As the extratropical cyclogenesis continues in the next two stages, bent back warm front stage and instant occlusion stage, the warmer air of the bent back front becomes surrounded by cooler air . Next, in the subtropical stage the latent heat release energy from the ocean surface begins ascent and forms a shallow warm core. As the energy from surface heat fluxes translates to convection within the system, the warm core extends further into the upper levels of the atmosphere in the final, tropical stage of TT. Model data from MM5 simulations of three storms, Noel (2001), Peter (2003) and Gaston (2004) are analyzed to illustrate the five stages of frontal TT. Noel is found to have the most baroclinic origin of the three and Gaston the least.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, SeaWinds, OVWST, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 613  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)