Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ali, M.M.; Bhowmick, S.A.; Sharma, R.; Chaudhury, A.; Pezzullo, J.C.; Bourassa, M.A.; Ramana, I.V.; Niharika, K. url  doi
openurl 
  Title An Artificial Neural Network Model Function (AMF) for SARAL-Altika Winds Type $loc['typeJournal Article']
  Year 2015 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing  
  Volume 8 Issue 11 Pages 5317-5323  
  Keywords AltiKa; artificial neural network (ANN); geophysical data records; wind speed  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-1404 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 118  
Permanent link to this record
 

 
Author (up) Bunge, L.; Clarke, A.J. url  doi
openurl 
  Title On the Warm Water Volume and Its Changing Relationship with ENSO Type $loc['typeJournal Article']
  Year 2014 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 44 Issue 5 Pages 1372-1385  
  Keywords Physical Meteorology and Climatology; Climate variability; ENSO; Observational techniques and algorithms; Climate records; Variability; Decadal variability; Interannual variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 156  
Permanent link to this record
 

 
Author (up) Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. url  doi
openurl 
  Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
  Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews  
  Volume 192 Issue Pages 282-299  
  Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE  
  Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-3791 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 971  
Permanent link to this record
 

 
Author (up) Gilford, D.M.; Smith, S.R.; Griffin, M.L.; Arguez, A. url  doi
openurl 
  Title Southeastern U.S. Daily Temperature Ranges Associated with the El Niño-Southern Oscillation Type $loc['typeJournal Article']
  Year 2013 Publication Journal of Applied Meteorology and Climatology Abbreviated Journal J. Appl. Meteor. Climatol.  
  Volume 52 Issue 11 Pages 2434-2449  
  Keywords Climate variability; Climatology; ENSO; Surface temperature; Climate records  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-8424 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)