Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Brolley, J. M. url  openurl
  Title Experimental Forest Fire Threat Forecast Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Forest Fire, El Nino, ENSO, Seasonal Forecast, KBDI, Keetch-Byram Drought Index, Bootstrapping  
  Abstract Climate shifts due to El Niño (warmer than normal ocean temperatures in the tropical Pacific Ocean) and La Niña (cooler than normal) are well known and used to predict seasonal temperature and precipitation trends up to a year in advance. These climate shifts are particularly strong in the Southeastern United States. During the winter and spring months, El Niño brings plentiful rainfall and cooler temperatures to Florida. Recent los Niños occurred in 1997-1998, one of the strongest on record, with another mild El Niño in 2002-2003. Conversely, La Niña is associated with warm and dry winter and spring seasons in Florida. Temperature and precipitation affect wildfire activity; interannual drivers of climate, like ENSO, have an influence on wildfire activity. Studies have shown a strong connection between wildfires in Florida and La Niña, with the more than double the average number of acres burned (O'Brien et al 2002; Jones et al. 1999). While this relationship is important and lends a degree of predictability to the relative activity of future wildfire seasons, human activities such as effective suppression, prescribed burns, and ignition can play an equally important role in wildfire risks. This study forecasts wildfire potential rather than actual burn statistics to avoid complications due to human interactions. This wildfire threat potential is based upon the Keetch-Byram Drought Index (KBDI). The KBDI is well suited as a seasonal forecast medium. It is based on daily temperature and rainfall measurements and responds to changing climate and weather conditions on time scales of days to months, and this index is high during dry warm weather patterns and low during wet cool patterns. The KBDI has been widely used in forestry in the Southeastern United States since its development in the 1970's, with foresters and firefighters have a good level of familiarity with the index and its applications. The KBDI is calculated daily and used as an index by wildfire managers. This study calculates wildfire potential using a statistical method known as bootstrapping. Many datasets contain approximately a half-century of data, and the limited dataset will introduce biases. Bootstrapping can remedy bias by simulating thousands of years of data, which retain the climatology for the past half-century. Bootstrapping preserves the mean but not the variance. By incorporating this method, this study will improve long-term forest fire risks that will become useful for those living or working near forests and assist in managing forests and wildfires. The Southeast Climate Consortium will also be issuing wildfire risk forecast for Florida and parts of Alabama and Georgia based on ENSO phase and the KBDI. Climate information and ENSO predictions are better served by incorporating them with known climate indices that are routinely used in the forestry sector. Wildfire managers and foresters operationally use the KBDI to monitor and predict wildfire activity (O'Brien et al. 2002). Meteorologists at the Florida Division of Forestry have demonstrated the validity of the KBDI as an indicator of potential wildfire activity in Florida (Long 2004). They showed that the value of the KBDI is not as important as the deviation from the monthly average. The wildfire risk forecast is based on the probabilities of KBDI anomalies and will present the probabilities associated with large deviations from the seasonal normal.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 622  
Permanent link to this record
 

 
Author Moroni, D. F. url  openurl
  Title Global and Regional Diagnostic Comparison of Air-Sea Flux Parameterizations during Episodic Events Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Parameterizations, Parameterization, Algorithm, Probability Density, Probability Distribution, Pdf, Drake Passage, Kuroshio, Gulf Stream Ect, Cold Tongue, Indian Ocean, Pacific Ocean, Southern Oceans, Atlantic Ocean, Tropics, Sea-State  
  Abstract Twenty turbulent flux parameterizations are compared globally and regionally with a focus on the differences associated with episodic events. The regional focus is primarily upon the Gulf Stream and Drake Passage, as these two regions contain vastly different physical characteristics related to storm and frontal passages, varieties of sea-states, and atmospheric stability conditions. These turbulent flux parameterizations are comprised of six stress-related parameterizations [i.e., Large and Pond (1981), Large et al. (1994), Smith (1988), HEXOS (Smith et al. 1992, 1996), Taylor and Yelland (2001), and Bourassa (2006)] which are paired with a choice of three atmospheric stability parameterizations ['Neutral' assumption, Businger-Dyer (Businger 1966, Dyer 1967, Businger et al. 1971, and Dyer 1974) relations, and Beljaars-Holtslag (1991) with Benoit (1977)]. Two remaining turbulent flux algorithms are COARE version 3 (Fairall et al. 2003) and Kara et al. (2005), where Kara et al. is a polynomial curve fit approximation to COARE; these have their own separate stability considerations. The following data sets were used as a common input for parameterization: Coordinated Ocean Reference Experiment version 1.0, Reynolds daily SST, and NOAA WaveWatch III. The overlapping time period for these data sets is an eight year period (1997 through 2004). Four turbulent flux diagnostics (latent heat flux, sensible heat flux, stress, curl of the stress) are computed using the above parameterizations and analyzed by way of probability distribution functions (PDFs) and RMS analyses. The differences in modeled flux consistency are shown to vary by region and season. Modeled flux consistency is determined both qualitatively (using PDF diagrams) and quantitatively (using RMS differences), where the best consistencies are found during near-neutral atmospheric stratification. Drake Passage shows the least sensitivity (in terms of the change in the tails of PDFs) to seasonal change. Specific flux diagnostics show varying degrees of consistency between stability parameterizations. For example, the Gulf Stream's latent heat flux estimates are the most inconsistent (compared to any other flux diagnostic) during episodic and non-neutral conditions. In all stability conditions, stress and the curl of stress are the most consistent modeled flux diagnostics. Sea-state is also a very important source of modeled flux inconsistencies during episodic events for both regions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 609  
Permanent link to this record
 

 
Author Scott, JP url  openurl
  Title An Intercomparison of Numerically Modeled Flux Data and Satellite-Derived Flux Data for Warm Seclusions Type $loc['typeManuscript']
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Satellite; Reanalysis; Air Sea Interaction; Turbulent Heat Fluxes; Intercomparison; Warm Seclusion  
  Abstract  
  Address  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 335  
Permanent link to this record
 

 
Author Engelman, M. B. url  openurl
  Title A Validation of the FSU/COAPS Climate Model Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Crop Models, Skill Scores, Seasonal Prediction, Extreme Events  
  Abstract This study examines the predictability of the Florida State University/Center for Oceanic and Atmospheric Prediction Studies (FSU/COAPS) climate model, and is motivated by the model's potential use in crop modeling. The study also compares real-time ensemble runs (created using persisted SST anomalies) to hindcast ensemble runs (created using weekly updated SST) to asses the effect of SST anomalies on forecast error. Wintertime (DJF, 2 month lead time) surface temperature and precipitation forecasts over the southeastern United States (Georgia, Alabama, and Florida) are evaluated because of the documented links between tropical Pacific SST anomalies and climate in the southeastern United States during the winter season. The global spectral model (GSM) runs at a T63 resolution and then is dynamically downscaled to a 20 x 20 km grid over the southeastern United States using the FSU regional spectral model (RSM). Seasonal, monthly, and daily events from the October 2004 and 2005 model runs are assessed. Seasonal (DJF) plots of real-time forecasts indicate the model is capable of predicting wintertime maximum and minimum temperatures over the southeastern United States. The October 2004 and 2005 real-time model runs both produce temperature forecasts with anomaly errors below 3°C, correlations close to one, and standard deviations similar to observations. Real-time precipitation forecasts are inconsistent. Error in the percent of normal precipitation vary from greater than 100% in the 2004/2005 forecasts to less than 35% error in the 2005/2006 forecasts. Comparing hindcast runs to real-time runs reveals some skill is lost in precipitation forecasts when using a method of SST anomaly persistence if the SST anomalies in the equatorial Pacific change early in the forecast period, as they did for the October 2004 model runs. Further analysis involving monthly and daily model data as well as Brier scores (BS), relative operating characteristics (ROC), and equitable threat scores (ETS), are also examined to confirm these results.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 607  
Permanent link to this record
 

 
Author Morey, S.; Koch, M.; Liu, Y.; Lee, S. -K. url  doi
openurl 
  Title Florida's oceans and marine habitats in a changing climate Type $loc['typeBook Chapter']
  Year 2017 Publication Florida's climate: Changes, variations, & impacts Abbreviated Journal  
  Volume Issue Pages 391-425  
  Keywords Ocean climate; Sea level rise; Florida climate; Gulf of Mexico; AMOC; Caribbean climate; Florida hydrology; Florida reefs; Global warming  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Florida Climate Institute Place of Publication Gainesville, FL Editor Chassignet, E. P.; Jones, J. W.; Misra, V.; Obeysekera, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 848  
Permanent link to this record
 

 
Author Weihs, R url  openurl
  Title Surface and Atmospheric Boundary Layer Responses to Diurnal Variations of Sea Surface Temperature in an NWP Model Type $loc['typeManuscript']
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Marine Boundary Layer; Numerical Weather Prediction; Sea Surface Temperature  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 339  
Permanent link to this record
 

 
Author Hiester, H.R.; Morey, S.L.; Dukhovskoy, D.S.; Chassignet, E.P.; Kourafalou, V.H.; Hu, C. url  doi
openurl 
  Title A topological approach for quantitative comparisons of ocean model fields to satellite ocean color data Type $loc['typeJournal Article']
  Year 2016 Publication Methods in Oceanography Abbreviated Journal Methods in Oceanography  
  Volume 17 Issue Pages 232-250  
  Keywords Satellite data; Ocean model; Ocean color; Sea surface salinity; Shape comparison; Hausdorff distance  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-1220 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 78  
Permanent link to this record
 

 
Author Danabasoglu, G.; Yeager, S.G.; Kim, W.M.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Bleck, R.; Böning, C.; Bozec, A.; Canuto, V.M.; Cassou, C.; Chassignet, E.; Coward, A.C.; Danilov, S.; Diansky, N.; Drange, H.; Farneti, R.; Fernandez, E.; Fogli, P.G.; Forget, G.; Fujii, Y.; Griffies, S.M.; Gusev, A.; Heimbach, P.; Howard, A.; Ilicak, M.; Jung, T.; Karspeck, A.R.; Kelley, M.; Large, W.G.; Leboissetier, A.; Lu, J.; Madec, G.; Marsland, S.J.; Masina, S.; Navarra, A.; Nurser, A.J.G.; Pirani, A.; Romanou, A.; Salas y Mélia, D.; Samuels, B.L.; Scheinert, M.; Sidorenko, D.; Sun, S.; Treguier, A.-M.; Tsujino, H.; Uotila, P.; Valcke, S.; Voldoire, A.; Wang, Q.; Yashayaev, I. url  doi
openurl 
  Title North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability Type $loc['typeJournal Article']
  Year 2016 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 97 Issue Pages 65-90  
  Keywords Global ocean – sea-ice modelling; Ocean model comparisons; Atmospheric forcing; Inter-annual to decadal variability and mechanisms; Atlantic meridional overturning circulation variability; Variability in the North Atlantic  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 34  
Permanent link to this record
 

 
Author Downes, S.M.; Farneti, R.; Uotila, P.; Griffies, S.M.; Marsland, S.J.; Bailey, D.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.; Bozec, A.; Canuto, V.M.; Chassignet, E.; Danabasoglu, G.; Danilov, S.; Diansky, N.; Drange, H.; Fogli, P.G.; Gusev, A.; Howard, A.; Ilicak, M.; Jung, T.; Kelley, M.; Large, W.G.; Leboissetier, A.; Long, M.; Lu, J.; Masina, S.; Mishra, A.; Navarra, A.; George Nurser, A.J.; Patara, L.; Samuels, B.L.; Sidorenko, D.; Spence, P.; Tsujino, H.; Wang, Q.; Yeager, S.G. url  doi
openurl 
  Title An assessment of Southern Ocean water masses and sea ice during 1988-2007 in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
  Year 2015 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 94 Issue Pages 67-94  
  Keywords Southern Ocean; CORE-II experiments; Water masses; Sea ice; Ocean model intercomparison  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 99  
Permanent link to this record
 

 
Author Farneti, R.; Downes, S.M.; Griffies, S.M.; Marsland, S.J.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.; Bozec, A.; Canuto, V.M.; Chassignet, E.; Danabasoglu, G.; Danilov, S.; Diansky, N.; Drange, H.; Fogli, P.G.; Gusev, A.; Hallberg, R.W.; Howard, A.; Ilicak, M.; Jung, T.; Kelley, M.; Large, W.G.; Leboissetier, A.; Long, M.; Lu, J.; Masina, S.; Mishra, A.; Navarra, A.; George Nurser, A.J.; Patara, L.; Samuels, B.L.; Sidorenko, D.; Tsujino, H.; Uotila, P.; Wang, Q.; Yeager, S.G. url  doi
openurl 
  Title An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958-2007 in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
  Year 2015 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 93 Issue Pages 84-120  
  Keywords Global ocean–sea ice modeling; Model comparisons; Southern Ocean meridional overturning circulation; Antarctic Circumpolar Current; Southern Ocean dynamics  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 103  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)