Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. url  doi
openurl 
  Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 76-97  
  Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth  
  Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1001  
Permanent link to this record
 

 
Author Zavala-Hidalgo, J; Pares-Sierra, A; Ochoa, J url  openurl
  Title Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2002 Publication Atmosfera Abbreviated Journal  
  Volume 15 Issue 2 Pages 81-104  
  Keywords Gulf of Mexico; heat fluxes; numerical model; sea surface temperature; seasonal variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 498  
Permanent link to this record
 

 
Author McNaught, C. url  openurl
  Title The Increasing Intensity and Frequency of ENSO and its Impacts to the Southeast U.S. Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ENSO; El-Nino; climate; meteorology; southeast climate; weather; time series; sea-surface temperatures; La-Nina  
  Abstract  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Bachelor's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 165  
Permanent link to this record
 

 
Author Glazer, R. H. url  openurl
  Title The Influence of Mesoscale Sea Surface Temperature Gradients on Tropical Cyclones Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Air-Sea Interaction; Numerical Modeling; Sea Surface Temperature; Tropical Cyclones; Tropical Meteorology  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 161  
Permanent link to this record
 

 
Author Hughes, P. J. url  openurl
  Title The Influence of Small-Scale Sea Surface Temperature Gradients on Surface Vector Winds and Subsequent Impacts on Oceanic Ekman Pumping Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Air-Sea Interaction; Sea Surface Temperature Gradients; SST-wind relationship; Surface Vector Winds  
  Abstract  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 162  
Permanent link to this record
 

 
Author Weihs, R url  openurl
  Title Surface and Atmospheric Boundary Layer Responses to Diurnal Variations of Sea Surface Temperature in an NWP Model Type $loc['typeManuscript']
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Marine Boundary Layer; Numerical Weather Prediction; Sea Surface Temperature  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 339  
Permanent link to this record
 

 
Author Gilford, D.M.; Smith, S.R.; Griffin, M.L.; Arguez, A. url  doi
openurl 
  Title Southeastern U.S. Daily Temperature Ranges Associated with the El Niño-Southern Oscillation Type $loc['typeJournal Article']
  Year 2013 Publication Journal of Applied Meteorology and Climatology Abbreviated Journal J. Appl. Meteor. Climatol.  
  Volume 52 Issue 11 Pages 2434-2449  
  Keywords Climate variability; Climatology; ENSO; Surface temperature; Climate records  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-8424 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 180  
Permanent link to this record
 

 
Author Rudzin, J.E.; Morey, S.L.; Bourassa, M.A.; Smith, S.R. url  doi
openurl 
  Title The Influence of Loop Current Position on Winter Sea Surface Temperatures in the Florida Straits Type $loc['typeJournal Article']
  Year 2013 Publication Earth Interactions Abbreviated Journal Earth Interact.  
  Volume 17 Issue 16 Pages 1-9  
  Keywords Air-sea interaction; Florida Straits; Loop Current; Sea surface temperature; CAO; Atlantic sailfish  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1087-3562 ISBN Medium  
  Area Expedition Conference  
  Funding OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 182  
Permanent link to this record
 

 
Author Hart, R.E.; Maue, R.N.; Watson, M.C. url  doi
openurl 
  Title Estimating Local Memory of Tropical Cyclones through MPI Anomaly Evolution Type $loc['typeJournal Article']
  Year 2007 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 135 Issue 12 Pages 3990-4005  
  Keywords Hurricanes; Tropical cyclones; Sea surface temperature; Stability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 698  
Permanent link to this record
 

 
Author Steffen, J.; Bourassa, M. url  doi
openurl 
  Title Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 9 Pages 1951-1968  
  Keywords SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC  
  Abstract The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 970  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)