Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. url  doi
openurl 
  Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 76-97  
  Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth  
  Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1001  
Permanent link to this record
 

 
Author Huang, N.E.; Wu, Z.; Pinzón, J.E.; Parkinson, C.L.; Long, S.R.; Blank, K.; Gloersen, P.; Chen, X. url  doi
openurl 
  Title Reductions Of Noise And Uncertainty In Annual Global Surface Temperature Anomaly Data Type $loc['typeJournal Article']
  Year 2009 Publication Advances in Adaptive Data Analysis Abbreviated Journal Adv. Adapt. Data Anal.  
  Volume 01 Issue 03 Pages 447-460  
  Keywords Global temperature change; down sampling; HHT filtering  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-5369 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 671  
Permanent link to this record
 

 
Author Zavala-Hidalgo, J; Pares-Sierra, A; Ochoa, J url  openurl
  Title Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2002 Publication Atmosfera Abbreviated Journal  
  Volume 15 Issue 2 Pages 81-104  
  Keywords Gulf of Mexico; heat fluxes; numerical model; sea surface temperature; seasonal variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 498  
Permanent link to this record
 

 
Author Zuromski, L. url  openurl
  Title Investigating Relationships Between Rising Temperatures and Heavy Rainfall Events in the Southeastern U.S. Using Analog Methods Type $loc['typeManuscript']
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords precipitation; temperature  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Bachelor's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 117  
Permanent link to this record
 

 
Author McNaught, C. url  openurl
  Title The Increasing Intensity and Frequency of ENSO and its Impacts to the Southeast U.S. Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ENSO; El-Nino; climate; meteorology; southeast climate; weather; time series; sea-surface temperatures; La-Nina  
  Abstract  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Bachelor's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 165  
Permanent link to this record
 

 
Author Selman, C. M. url  openurl
  Title Simulating the Impacts and Sensitivity of the Southeastern United States Climatology to Irrigation Type $loc['typeManuscript']
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords climate; irrigation; precipitation; regional model; temperature  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 111  
Permanent link to this record
 

 
Author Glazer, R. H. url  openurl
  Title The Influence of Mesoscale Sea Surface Temperature Gradients on Tropical Cyclones Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Air-Sea Interaction; Numerical Modeling; Sea Surface Temperature; Tropical Cyclones; Tropical Meteorology  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 161  
Permanent link to this record
 

 
Author Hughes, P. J. url  openurl
  Title The Influence of Small-Scale Sea Surface Temperature Gradients on Surface Vector Winds and Subsequent Impacts on Oceanic Ekman Pumping Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Air-Sea Interaction; Sea Surface Temperature Gradients; SST-wind relationship; Surface Vector Winds  
  Abstract  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 162  
Permanent link to this record
 

 
Author Smith, R. A. url  openurl
  Title Trends in Maximum and Minimum Temperature Deciles in Select Regions of the United States Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Long term temperature trends, Climate change, Statistical analysis, Climatology  
  Abstract Daily maximum and minimum temperature data from 758 COOP stations in nineteen states are used to create temperature decile maps. All stations used contain records from 1948 through 2004 and could not be missing more than 5 consecutive years of data. Missing data are replaced using a multiple linear regression technique from surrounding stations. For each station, the maximum and minimum temperatures are first sorted in ascending order for every two years (to reduce annual variability) and divided into ten equal parts (or deciles). The first decile represents the coldest temperatures, and the last decile contains the warmest temperatures. Patterns and trends in these deciles can be examined for the 57-year period. A linear least-squares regression method is used to calculate best-fit lines for each decile to determine the long-term trends at each station. Significant warming or cooling is determined using the Student's t-test, and bootstrapping the decile data will further examine the validity of significance. Two stations are closely examined. Apalachicola, Florida shows significant warming in its maximum deciles and significant cooling in its minimum deciles. The maximum deciles seem to be affected by some localized change. The minimum deciles are discontinuous, and the trends are a result of a minor station move. Columbus, Georgia has experienced significant warming in its minimum deciles, and this appears to be the result of an urban heat-island effect. The discontinuities seen in the Apalachicola case study illustrate the need for a quality control method. This method will eliminate stations from the regional analysis that experience large changes in the ten-year standard deviations within their time series. The regional analysis shows that most of the region is dominated by significant cooling in the maximum deciles and significant warming in the minimum deciles, with more variability in the lower deciles. Field significance testing is performed on subregions (based on USGS 2000 land cover data) and supports the findings from the regional analysis; it also isolates regions, such as the Florida peninsula and the Maryland/Delaware region, that appear to be affected by more local forcings.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 612  
Permanent link to this record
 

 
Author Weihs, R url  openurl
  Title Surface and Atmospheric Boundary Layer Responses to Diurnal Variations of Sea Surface Temperature in an NWP Model Type $loc['typeManuscript']
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Marine Boundary Layer; Numerical Weather Prediction; Sea Surface Temperature  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 339  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)