|   | 
Author Hu, X.; Cai, M.; Yang, S.; Wu, Z.
Title Delineation of thermodynamic and dynamic responses to sea surface temperature forcing associated with El Niño Type $loc['typeJournal Article']
Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 51 Issue 11-12 Pages 4329-4344
Keywords El Niño; SST anomalies; Thermodynamic and dynamic responses; Gill-type response
Abstract A new framework is proposed to gain a better understanding of the response of the atmosphere over the tropical Pacific to the radiative heating anomaly associated with the sea surface temperature (SST) anomaly in canonical El Niño winters. The new framework is based on the equilibrium balance between thermal radiative cooling anomalies associated with air temperature response to SST anomalies and other thermodynamic and dynamic processes. The air temperature anomalies in the lower troposphere are mainly in response to radiative heating anomalies associated with SST, atmospheric water vapor, and cloud anomalies that all exhibit similar spatial patterns. As a result, air temperature induced thermal radiative cooling anomalies would balance out most of the radiative heating anomalies in the lower troposphere. The remaining part of the radiative heating anomalies is then taken away by an enhancement (a reduction) of upward energy transport in the central-eastern (western) Pacific basin, a secondary contribution to the air temperature anomalies in the lower troposphere. Above the middle troposphere, radiative effect due to water vapor feedback is weak. Thermal radiative cooling anomalies are mainly in balance with the sum of latent heating anomalies, vertical and horizontal energy transport anomalies associated with atmospheric dynamic response and the radiative heating anomalies due to changes in cloud. The pattern of Gill-type response is attributed mainly to the non-radiative heating anomalies associated with convective and large-scale energy transport. The radiative heating anomalies associated with the anomalies of high clouds also contribute positively to the Gill-type response. This sheds some light on why the Gill-type atmospheric response can be easily identifiable in the upper atmosphere.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 997
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)