Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bhowmick, S. A.; Agarwal, N.; Ali, M. M.; Kishtawal, C. M.; Sharma, R. url  doi
openurl 
  Title Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Nina events Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal  
  Volume 52 Issue 12 Pages 7225-7234  
  Keywords La-Niña; Bay of Bengal; Tropical cyclones; Ocean heat content  
  Abstract This study aims to analyze the role of ocean heat content in boosting the post-monsoon cyclonic activities over Bay of Bengal during La-Niña events. In strong La-Niña years, accumulated cyclone energy in Bay of Bengal is much more as compared to any other year. It is observed that during late June to October of moderate to strong La-Nina years, western Pacific is warmer. Sea surface temperature anomaly of western Pacific Ocean clearly indicates the presence of relatively warmer water mass in the channel connecting the Indian Ocean and Pacific Ocean, situated above Australia. Ocean currents transport the heat zonally from Pacific to South eastern Indian Ocean. Excess heat of the southern Indian Ocean is eventually transported to eastern equatorial Indian Ocean through strong geostrophic component of ocean current. By September the northward transport of this excess heat from eastern equatorial Indian Ocean to Bay of Bengal takes place during La-Nina years boosting the cyclonic activities thereafter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 71  
Permanent link to this record
 

 
Author Misra, V.; Selman, C.; Waite, A. J.; Bastola, S.; Mishra, A. url  doi
openurl 
  Title Terrestrial and Ocean Climate of the 20th Century Type $loc['typeBook Chapter']
  Year 2017 Publication Florida's climate: Changes, variations, & impacts Abbreviated Journal  
  Volume Issue Pages 485-509  
  Keywords Seasonal cycle; Diurnal variations; Sea breeze; ENSO; Tropical cyclones; Hurricanes; AWP; AMO; PDO; PIZA  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Florida Climate Institute Place of Publication Gainesville, FL Editor Chassignet, E. P.; Jones, J. W.; Misra, V.; Obeysekera, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 849  
Permanent link to this record
 

 
Author Glazer, R. H. url  openurl
  Title The Influence of Mesoscale Sea Surface Temperature Gradients on Tropical Cyclones Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Air-Sea Interaction; Numerical Modeling; Sea Surface Temperature; Tropical Cyclones; Tropical Meteorology  
  Abstract  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 161  
Permanent link to this record
 

 
Author Guimond, S. R. url  openurl
  Title A diagnostic study of the effects of trough interactions on tropical cyclone QPF. Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Satellites, Precipitation, Tropical Cyclones, Troughs  
  Abstract A composite study is presented analyzing the influence of upper-tropospheric troughs on the evolution of precipitation in twelve Atlantic tropical cyclones (TCs) between the years 2000 � 2005. The TRMM Multi-Satellite Precipitation Analysis (TMPA) is used to examine the enhancement of precipitation within a 24 h window centered on trough interaction (TI) time in a shear-vector relative coordinate system. Eddy angular momentum flux convergence (EFC) computed from European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses is employed to objectively determine the initiation of a TI while adding insight, along with vertical wind shear, into the intensification of TC vortices. The relative roles of the dynamics (EFC and vertical wind shear) and thermodynamics (moist static energy potential) in TIs are outlined in the context of precipitation enhancement that provides quantitative insight into the “good trough”/“bad trough” paradigm. The largest precipitation rates and enhancements are found in the down-shear left quadrant of the storm, consistent with previous studies of convective asymmetries. Maximum mean enhancement values of 1.4 mm/h are found at the 200 km radius in the down-shear left quadrant. Results indicate that the largest precipitation enhancements occur with “medium” TIs; comprised of EFC values between 17 � 22 (m/s)/day and vertical wind shear Sensitivity tests on the upper vertical wind shear boundary reveal the importance of using the tropopause for wind shear computations when a TC enters mid-latitude regions. Changes in radial mean precipitation ranging from 29 � 40 % across all storm quadrants are found when using the tropopause as the upper boundary on the shear vector. Tests on the lower boundary using QuikSCAT ocean surface wind vectors expose large sensitivities on the precipitation ranging from 42 � 60 % indicating that the standard level of 850 hPa, outside of the boundary layer in most storms, is more physically reliable for computing vertical wind shear. These results should help to improve TC quantitative precipitation forecasting (QPF) as operational forecasters routinely rely on crude statistical methods and rules of thumb for forecasting TC precipitation.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 610  
Permanent link to this record
 

 
Author Maue, R. N. url  openurl
  Title Evolution of Frontal Structure Associated with Extratropical Transitioning Hurricanes Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Extratropical Transition, Frontogenesis, Fronts, Quikscat, Cyclone Lifecycles, Warm Seclusion, Frontal Fracture, Potential Vorticity, Hurricane Kate, Hurricane Irene, Hurricane Fabian, Tropical Cyclones  
  Abstract Many tropical cyclones move poleward, encounter vertical shear associated with the midlatitude circulation, and undergo a process called extratropical transition (ET). One of the many factors affecting the post-transition extratropical storm in terms of reintensification, frontal structure, and overall evolution is the upper-level flow pattern. Schultz et al. (1998) categorized extratropical cyclones according to two of the many possible cyclone paradigms in terms of the upper-level trough configuration: The Norwegian cyclone model (Bjerknes and Solberg 1922) associated with high-amplitude diffluent trough flow and the Shapiro-Keyser cyclone lifecycle (1990) with low-amplitude confluent troughs. Broadly speaking, the former category is associated with a strong, meridionally oriented cold front with a weak warm front while the latter lifecycle usually entails a prominent, zonally oriented warm front. However, as will be shown, simple antipode lifecycle definitions fail to capture hybrid or cross-lifecycle evolution of transitioned tropical cyclones. To exemplify the importance upper-level features such as jet streaks and troughs, a potential vorticity framework is coupled with vector frontogenesis functions to diagnose the interaction between the poleward transitioning cyclone and the midlatitude circulation. Particular focus is concentrated upon the evolution and strength of frontal fracture from both a PV and frontogenesis viewpoint. The final outcome of extratropical transition is highly variable depending on characteristics of the tropical cyclone, SSTs, and environmental factors such as strength of vertical shear. Here, three storms (Irene 1999, Fabian 2003, and Kate 2003) typify the inherent variability of one such ET outcome, warm seclusion. Very strong winds are often observed in excess of 50 ms-1 along the southwestern flank of the storm down the bent-back warm front. The low-level wind field kinematics are examined using vector frontogenesis functions and QuikSCAT winds. A complex empirical orthogonal function (CEOF) technique is adapted to temporally interpolate ECMWF model fields (T, MSLP) to overpass times of the scatterometer, an improvement over simple linear interpolation. Overall, the above diagnosis is used to support a hypothesis concerning the prevalence of hurricane-force winds surrounding secluded systems.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 625  
Permanent link to this record
 

 
Author DiNapoli, S url  openurl
  Title Determining the Error Characteristics of H*WIND Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Hurricane, Tropical Cyclones, Wind Analysis, Uncertainty  
  Abstract The HRD Real-time Hurricane Wind Analysis System (H*Wind) is a software application used by NOAA's Hurricane Research Division to create a gridded tropical cyclone wind analysis based on a wide range of observations. One application of H*Wind fields is calibration of scatterometers for high wind speed environments. Unfortunately, the accuracy of the H*Wind product has not been studied extensively, and therefore the accuracy of scatterometer calibrations in these environments is also unknown. This investigation seeks to determine the uncertainty in the H*Wind product and estimate the contributions of several potential error sources. These error sources include random observation errors, relative bias between different data types, temporal drift resulting from combining non-simultaneous measurements, and smoothing and interpolation errors in the H*Wind software. The effects of relative bias between different data types and random observation errors are determined by performing statistical calculations on the observed wind speeds. We show that in the absence of large biases, the total contribution of all error sources results in an uncertainty of approximately 7% near the storm center, which increases to nearly 15% near the tropical storm force wind radius. The H*Wind analysis algorithm is found to introduce a positive bias to the wind speeds near the storm center, where the analyzed wind speeds are enhanced to match the highest observations. In addition, spectral analyses are performed to ensure that the filter wavelength of the final analysis product matches user specifications. With increased knowledge of these error sources and their effects, researchers will have a better understanding of the uncertainty in the H*Wind product, and can then judge the suitability of H*Wind for various research applications  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 574  
Permanent link to this record
 

 
Author Morey, S.L.; Bourassa, M.A.; Dukhovskoy, D.S.; O'Brien, J.J. url  doi
openurl 
  Title Modeling studies of the upper ocean response to a tropical cyclone Type $loc['typeJournal Article']
  Year 2006 Publication Ocean Dynamics Abbreviated Journal Ocean Dynamics  
  Volume 56 Issue 5-6 Pages 594-606  
  Keywords air-sea interaction; tropical cyclones; ocean modeling; air-sea fluxes  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-7341 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 432  
Permanent link to this record
 

 
Author LaRow, T. url  doi
openurl 
  Title An analysis of tropical cyclones impacting the Southeast United States from a regional reanalysis Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 35-43  
  Keywords Dynamical downscaling; Tropical cyclones; Regional reanalysis  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 188  
Permanent link to this record
 

 
Author Subrahmanyam, B.; Murty, V.S.N.; Sharp, R.J.; O'Brien, J.J. url  doi
openurl 
  Title Air-sea Coupling During the Tropical Cyclones in the Indian Ocean: A Case Study Using Satellite Observations Type $loc['typeJournal Article']
  Year 2005 Publication Pure and Applied Geophysics Abbreviated Journal Pure appl. geophys.  
  Volume 162 Issue 8-9 Pages 1643-1672  
  Keywords tropical cyclones; Indian Ocean; EOL; OLR; sea-surface salinity; mixed layer depth; Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-4553 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 452  
Permanent link to this record
 

 
Author Holbach, H.M.; Bourassa, M.A. url  doi
openurl 
  Title The Effects of Gap-Wind-Induced Vorticity, the Monsoon Trough, and the ITCZ on East Pacific Tropical Cyclogenesis Type $loc['typeJournal Article']
  Year 2014 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 142 Issue 3 Pages 1312-1325  
  Keywords Central America; Remote sensing; Vorticity; Valley/mountain flows; Tropical cyclones; Cyclogenesis/cyclolysis  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 130  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)