Records |
Author  |
Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. |
Title |
CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Deep Sea Research Part I: Oceanographic Research Papers |
Abbreviated Journal |
Deep Sea Research Part I: Oceanographic Research Papers |
Volume |
|
Issue |
|
Pages |
|
Keywords |
Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system |
Abstract |
Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014�2015) followed by an El Niño (2015�2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Niño 2016 � and three cruises during El Niño-neutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, mass-specific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention |
Address |
Deep-Sea Research Part I |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0967-0637 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
966 |
Permanent link to this record |
|
|
|
Author  |
Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. |
Title |
CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Deep Sea Research Part I: Oceanographic Research Papers |
Abbreviated Journal |
Deep Sea Research Part I: Oceanographic Research Papers |
Volume |
140 |
Issue |
|
Pages |
52-62 |
Keywords |
Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system |
Abstract |
Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0967-0637 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1021 |
Permanent link to this record |
|
|
|
Author  |
Murty, V.S.N. |
Title |
A new technique for the estimation of sea surface salinity in the tropical Indian Ocean from OLR |
Type |
$loc['typeJournal Article'] |
Year |
2004 |
Publication |
Journal of Geophysical Research |
Abbreviated Journal |
J. Geophys. Res. |
Volume |
109 |
Issue |
C12 |
Pages |
|
Keywords |
sea surface salinity; tropical Indian Ocean; outgoing longwave radiation; effective oceanic layer; 1997-1998 El Nino event; interannual variability |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0148-0227 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
453 |
Permanent link to this record |
|
|
|
Author  |
Nyadjro, E.S.; Rydbeck, A.V.; Jensen, T.G.; Richman, J.G.; Shriver, J.F. |
Title |
On the Generation and Salinity Impacts of Intraseasonal Westward Jets in the Equatorial Indian Ocean |
Type |
$loc['typeJournal Article'] |
Year |
2020 |
Publication |
Journal of Geophysical Research: Oceans |
Abbreviated Journal |
J. Geophys. Res. Oceans |
Volume |
125 |
Issue |
6 |
Pages |
e2020JC016066 |
Keywords |
ndian Ocean; intraseasonal variability; westward Jet; intraseasonal oscillations; mixed layer salinity; surface currents |
Abstract |
While westerly winds dominate the equatorial Indian Ocean and generate the well‐known eastward flowing Wyrtki Jets during boreal spring and fall, there is evidence of a strong westward surface jet during winter that is swifter than eastward currents during that season. A weaker westward jet is found in summer. In this study, we report the occurrence, characteristics, and intraseasonal variability of this westward jet and its impact on mixed layer salinity in the equatorial Indian Ocean using the HYbrid Coordinate Ocean Model (HYCOM) reanalysis with the Navy Coupled Ocean Data Assimilation (NCODA). The westward jet typically occurs in the upper 50 m, above an eastward flowing equatorial undercurrent, with peak westward volume transport of approximately −8 Sv. The westward jet builds up gradually, decays rapidly, and is primarily forced by local intraseasonal wind stress anomalies generated by atmospheric intraseasonal convection. Westward acceleration of the jet occurs when the dominant intraseasonal westward wind anomaly is not balanced by the zonal pressure gradient (ZPG) force. The intraseasonal westward jet generates strong horizontal advection and is the leading cause of mixed layer freshening in the western equatorial Indian Ocean. Without it, a saltier mixed layer would persist and weaken any barrier layers. Existing barrier layers are strengthened following the passage of freshwater‐laden westward jets. Deceleration of the westward jet occurs when the eastward ZPG becomes increasingly important and the westward intraseasonal wind anomalies weaken. A rapid reversal of atmospheric intraseasonal convection‐driven surface winds eventually terminates the westward jet. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2169-9275 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1118 |
Permanent link to this record |
|
|
|
Author  |
Pantina, P |
Title |
Characterizing the Variability of the Indian Monsoon: Changes in Evaporative Sources for Summertime Rainfall Events |
Type |
$loc['typeManuscript'] |
Year |
2010 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
Variability, Trajectories, India, Monsoon, Evaporative Source, Moisture Source |
Abstract |
This study focuses on the interannual and intraseasonal variability of evaporative sources for rainfall events during the Indian monsoon. The monsoon is an important part of the economy and lifestyle in India, thus, any improvements in our understanding of its mechanisms would be directly beneficial to society. We first discuss the use of evaporative sources for rainfall events as an important tool to help increase our knowledge of the variations of the monsoon. We then outline the variability of the monsoon on an interannual (wet and dry years) and intraseasonal (active and break periods) time scale. We use three reanalyses (NCEP-R2, CFSR, and MERRA) and an IMD gridded rainfall dataset to trace the location and strength of evaporative sources via a quasi-isentropic back trajectory program. The program uses reanalysis winds and evaporation, among other parameters, to estimate these sources back in time. We discuss the differences in parameters between the datasets on a seasonal, interannual, and intraseasonal time scale. We then thoroughly investigate the strength and location of evaporative sources between datasets on interannual and intraseasonal time scales, and we attempt to explain the variations by analyzing the differences in the input parameters and circulation mechanisms themselves. The study finds that the evaporative sources for given interannual or intraseasonal rainfall events do vary in strength and location. Interannually, the strongest change in evaporative source occurs over central India and the Arabian Sea, suggesting that the overall monsoon flow contributes moisture for Indian rainfall on this time scale. Intraseasonally, the strongest change in evaporative source occurs over the Bay of Bengal, suggesting that low pressure systems contribute moisture for Indian rainfall on this time scale. All three reanalyses yield similar fields of evaporative source. We conclude that accurate prediction of the Indian monsoon requires improved understanding of both interannual and intraseasonal oscillations since the sources of moisture for these events are unique. |
Address |
Department of Earth Ocean and Atmospheric Science |
Corporate Author |
|
Thesis |
$loc['Master's thesis'] |
Publisher |
Florida State University |
Place of Publication |
Tallahassee, FL |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
577 |
Permanent link to this record |
|
|
|
Author  |
Parfitt, R.; Ummenhofer, C.C.; Buckley, B.M.; Hansen, K.G.; D'Arrigo, R.D. |
Title |
Distinct seasonal climate drivers revealed in a network of tree-ring records from Labrador, Canada |
Type |
$loc['typeJournal Article'] |
Year |
2020 |
Publication |
Climate Dynamics |
Abbreviated Journal |
Clim Dyn |
Volume |
54 |
Issue |
3-4 |
Pages |
1897-1911 |
Keywords |
BLUE INTENSITY; LATEWOOD DENSITY; TEMPERATURE; DENDROCLIMATOLOGY; PRECIPITATION; STANDARDIZATION; VARIABILITY; NUNATSIAVUT; TRENDS; GULF |
Abstract |
Traditionally, high-latitude dendroclimatic studies have focused on measurements of total ring width (RW), with the maximum density of the latewood (MXD) serving as a complementary variable. Whilst MXD has typically improved the strength of the growing season climate connection over that of RW, its measurements are costly and time-consuming. Recently, a less costly and more time-efficient technique to extract density measurements has emerged, based on lignin's propensity to absorb blue light. This Blue Intensity (BI) methodology is based on image analyses of finely-sanded core samples, and the relative ease with which density measurements can be extracted allows for significant increases in spatio-temporal sample depth. While some studies have attempted to combine RW and MXD as predictors for summer temperature reconstructions, here we evaluate a systematic comparison of the climate signal for RW and latewood BI (LWBI) separately, using a recently updated and expanded tree ring database for Labrador, Canada. We demonstrate that while RW responds primarily to climatic drivers earlier in the growing season (January-April), LWBI is more responsive to climate conditions during late spring and summer (May-August). Furthermore, RW appears to be driven primarily by large-scale atmospheric dynamics associated with the Pacific North American pattern, whilst LWBI is more closely associated with local climate conditions, themselves linked to the behaviour of the Atlantic Multidecadal Oscillation. Lastly, we demonstrate that anomalously wide or narrow growth rings consistently respond to the same climate drivers as average growth years, whereas the sensitivity of LWBI to extreme climate conditions appears to be enhanced. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0930-7575 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1119 |
Permanent link to this record |
|
|
|
Author  |
Perron, M.; Sura, P. |
Title |
Climatology of Non-Gaussian Atmospheric Statistics |
Type |
$loc['typeJournal Article'] |
Year |
2013 |
Publication |
Journal of Climate |
Abbreviated Journal |
J. Climate |
Volume |
26 |
Issue |
3 |
Pages |
1063-1083 |
Keywords |
Atmospheric circulation; Extreme events; Climate variability; Climatology; Statistics; Time series |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0894-8755 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
225 |
Permanent link to this record |
|
|
|
Author  |
Proshutinsky, A.; Dukhovskoy, D.; Timmermans, M.-L.; Krishfield, R.; Bamber, J.L. |
Title |
Arctic circulation regimes |
Type |
$loc['typeJournal Article'] |
Year |
2015 |
Publication |
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences |
Abbreviated Journal |
Philos Trans A Math Phys Eng Sci |
Volume |
373 |
Issue |
2052 |
Pages |
|
Keywords |
arctic climate variability; circulation regimes; freshwater and heat content |
Abstract |
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. |
Address |
School of Geographical Sciences, University of Bristol, Bristol, UK |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1364-503X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
PMID:26347536; PMCID:PMC4607701 |
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
109 |
Permanent link to this record |
|
|
|
Author  |
Qian, C.; Wu, Z.; Fu, C.; Zhou, T. |
Title |
On multi-timescale variability of temperature in China in modulated annual cycle reference frame |
Type |
$loc['typeJournal Article'] |
Year |
2010 |
Publication |
Advances in Atmospheric Sciences |
Abbreviated Journal |
Adv. Atmos. Sci. |
Volume |
27 |
Issue |
5 |
Pages |
1169-1182 |
Keywords |
modulated annual cycle; the Ensemble Empirical Mode Decomposition; climate anomaly; climate normal; variability of surface air temperature in China |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0256-1530 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
355 |
Permanent link to this record |
|
|
|
Author  |
Robinson, W.; Speich, S.; Chassignet, E. |
Title |
Exploring the Interplay Between Ocean Eddies and the Atmosphere |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Eos |
Abbreviated Journal |
Eos |
Volume |
99 |
Issue |
|
Pages |
|
Keywords |
Mesoscale; Climate; Variability; Atmospheric |
Abstract |
Climate models, for the first time, have sufficient resolution to capture mesoscale ocean eddies and their interactions with the atmosphere.New model results suggest that the atmosphere, at weather scales or larger, responds to cumulative effects of the much smaller ocean eddies. Intriguing new model results presented at the workshop suggested that the atmosphere, at weather scales or larger. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2324-9250 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ rl18 @ |
Serial |
988 |
Permanent link to this record |