Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Pantina, P url  openurl
  Title Characterizing the Variability of the Indian Monsoon: Changes in Evaporative Sources for Summertime Rainfall Events Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Variability, Trajectories, India, Monsoon, Evaporative Source, Moisture Source  
  Abstract This study focuses on the interannual and intraseasonal variability of evaporative sources for rainfall events during the Indian monsoon. The monsoon is an important part of the economy and lifestyle in India, thus, any improvements in our understanding of its mechanisms would be directly beneficial to society. We first discuss the use of evaporative sources for rainfall events as an important tool to help increase our knowledge of the variations of the monsoon. We then outline the variability of the monsoon on an interannual (wet and dry years) and intraseasonal (active and break periods) time scale. We use three reanalyses (NCEP-R2, CFSR, and MERRA) and an IMD gridded rainfall dataset to trace the location and strength of evaporative sources via a quasi-isentropic back trajectory program. The program uses reanalysis winds and evaporation, among other parameters, to estimate these sources back in time. We discuss the differences in parameters between the datasets on a seasonal, interannual, and intraseasonal time scale. We then thoroughly investigate the strength and location of evaporative sources between datasets on interannual and intraseasonal time scales, and we attempt to explain the variations by analyzing the differences in the input parameters and circulation mechanisms themselves. The study finds that the evaporative sources for given interannual or intraseasonal rainfall events do vary in strength and location. Interannually, the strongest change in evaporative source occurs over central India and the Arabian Sea, suggesting that the overall monsoon flow contributes moisture for Indian rainfall on this time scale. Intraseasonally, the strongest change in evaporative source occurs over the Bay of Bengal, suggesting that low pressure systems contribute moisture for Indian rainfall on this time scale. All three reanalyses yield similar fields of evaporative source. We conclude that accurate prediction of the Indian monsoon requires improved understanding of both interannual and intraseasonal oscillations since the sources of moisture for these events are unique.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 577  
Permanent link to this record
 

 
Author Brolley, J. M. url  openurl
  Title Effects of ENSO, NAO (PVO), and PDO on Monthly Extreme Temperatures and Precipitation Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords NAO, PDO, ENSO, Climate Variability, Extremes, Stochastic  
  Abstract The El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the Polar Vortex Oscillation (PVO) produce conditions favorable for monthly extreme temperatures and precipitation. These climate modes produce upper-level teleconnection patterns that favor regional droughts, floods, heat waves, and cold spells, and these extremes impact agriculture, energy, forestry, and transportation. The above sectors prefer the knowledge of the worst (and sometimes the best) case scenarios. This study examines the extreme scenarios for each phase and the combination of phases that produce the greatest monthly extremes. Data from Canada, Mexico, and the United States are gathered from the Historical Climatology Network (HCN). Monthly data are simulated by the utilization of a Monte Carlo model. This Monte Carlo method simulates monthly data by the stochastic selection of daily data with identical ENSO, PDO, and PVO (NAO) characteristics. In order to test the quality of the Monte Carlo simulation, the simulations are compared with the observations using only PDO and PVO. It has been found that temperatures and precipitation in the simulation are similar to the model. Statistics tests have favored similarities between simulations and observations in most cases. Daily data are selected in blocks of four to eight days in order to conserve temporal correlation. Because the polar vortex occurs only during the cold season, the PVO is used during January, and the NAO is used during other months. The simulated data are arranged, and the tenth and ninetieth percentiles are analyzed. The magnitudes of temperature and precipitation anomalies are the greatest in the western Canada and the southeastern United States during winter, and these anomalies are located near the Pacific North American (PNA) extrema. Western Canada has its coldest (warmest) Januaries when the PDO and PVO are low (high). The southeastern United States has its coldest Januaries with high PDO and low PVO and warmest Januaries with low PDO and high PVO. Although extremes occur during El Nino or La Nina, many stations have the highest or lowest temperatures during neutral ENSO. In California and the Gulf Coast, the driest (wettest) Januaries tend to occur during low (high) PDO, and the reverse occurs in Tennessee, Kentucky, Ohio, and Indiana. Summertime anomalies, on the other hand, are weak because temperature variance is low. Phase combinations that form the wettest (driest) Julies form spatially incoherent patterns. The magnitudes of the temperature and precipitation anomalies and the corresponding phase combinations vary regionally and seasonally. Composite maps of geopotential heights across North America are plot for low, median, and high temperatures at six selected sites and for low, median, and high precipitation at the same sites. The greatest fluctuations occur near the six sites and over some of the loci of the PNA pattern. Geopotential heights tend to decrease (increase) over the target stations during the cold (warm) cases, and the results for precipitation are variable.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 587  
Permanent link to this record
 

 
Author Hughes, P. J. url  openurl
  Title North Atlantic Decadal Variability of Ocean Surface Fluxes Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Decadal, North Atlantic, Sensible Heat Flux, Latent Heat Flux, Variability  
  Abstract The spatial and temporal variability of the surface turbulent heat fluxes over the North Atlantic is examined using the new objectively produced FSU3 monthly mean 1°x1° gridded wind and surface flux product for 1978-2003. The FSU3 product is constructed from in situ ship and buoy observations via a variational technique. A cost function based on weighted constraints is minimized in the process of determining the surface fluxes. The analysis focuses on a low frequency (basin wide) mode of variability where the latent and sensible heat flux anomalies transition from mainly positive to negative values around 1998. It is hypothesized that the longer time scale variability is linked to changes in the large scale circulation patterns possibly associated with the Atlantic Multidecadal Oscillation (AMO; Schlesinger and Ramankutty 1994, Kerr 2000). The changes in the surface heat fluxes are forced by fluctuations in the mean wind speed. Zonal averages show a clear dissimilarity between the turbulent heat fluxes and wind speed for 1982-1997 and 1998-2003 over the region extending from the equator to roughly 40°N. Larger values are associated with the earlier time period, coinciding with a cool phase of the AMO. The separation between the two time periods is much less evident for the humidity and air/sea temperature differences. The largest differences in the latent heat fluxes, between the two time periods, occur over the tropical, Gulf Stream, and higher latitude regions of the North Atlantic, with magnitudes exceeding 15 Wm-2. The largest sensible heat flux differences are limited to areas along the New England coast and poleward of 40°N.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 617  
Permanent link to this record
 

 
Author Proshutinsky, A.; Dukhovskoy, D.; Timmermans, M.-L.; Krishfield, R.; Bamber, J.L. url  doi
openurl 
  Title Arctic circulation regimes Type $loc['typeJournal Article']
  Year 2015 Publication Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences Abbreviated Journal Philos Trans A Math Phys Eng Sci  
  Volume 373 Issue 2052 Pages  
  Keywords arctic climate variability; circulation regimes; freshwater and heat content  
  Abstract Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.  
  Address School of Geographical Sciences, University of Bristol, Bristol, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X ISBN Medium  
  Area Expedition Conference  
  Funding PMID:26347536; PMCID:PMC4607701 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 109  
Permanent link to this record
 

 
Author Zavala-Hidalgo, J; Pares-Sierra, A; Ochoa, J url  openurl
  Title Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2002 Publication Atmosfera Abbreviated Journal  
  Volume 15 Issue 2 Pages 81-104  
  Keywords Gulf of Mexico; heat fluxes; numerical model; sea surface temperature; seasonal variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 498  
Permanent link to this record
 

 
Author Subrahmanyam, S.; Robinson, S. url  doi
openurl 
  Title Sea Surface Height Variability in the Indian Ocean from TOPEX/POSEIDON Altimetry and Model Simulations Type $loc['typeJournal Article']
  Year 2000 Publication Marine Geodesy Abbreviated Journal Marine Geodesy  
  Volume 23 Issue 3 Pages 167-195  
  Keywords Kelvin And Rossby Waves; Eddies; Sea Level Variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-0419 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 792  
Permanent link to this record
 

 
Author Robinson, W.; Speich, S.; Chassignet, E. url  doi
openurl 
  Title Exploring the Interplay Between Ocean Eddies and the Atmosphere Type $loc['typeJournal Article']
  Year 2018 Publication Eos Abbreviated Journal Eos  
  Volume 99 Issue Pages  
  Keywords Mesoscale; Climate; Variability; Atmospheric  
  Abstract Climate models, for the first time, have sufficient resolution to capture mesoscale ocean eddies and their interactions with the atmosphere.New model results suggest that the atmosphere, at weather scales or larger, responds to cumulative effects of the much smaller ocean eddies. Intriguing new model results presented at the workshop suggested that the atmosphere, at weather scales or larger.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2324-9250 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 988  
Permanent link to this record
 

 
Author Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. url  doi
openurl 
  Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
  Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews  
  Volume 192 Issue Pages 282-299  
  Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE  
  Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-3791 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 971  
Permanent link to this record
 

 
Author Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. url  doi
openurl 
  Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 52-62  
  Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system KeyWords Plus:ZOOPLANKTON FECAL PELLETS; NORTH PACIFIC-OCEAN; CURRENT SYSTEM; SOUTHERN CALIFORNIA; UNDERWATER GLIDERS; CARBON EXPORT; ZONE; CHLOROPHYLL; STABILITY; EQUATIONS  
  Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 983  
Permanent link to this record
 

 
Author Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. url  doi
openurl 
  Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume Issue Pages  
  Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system  
  Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014�2015) followed by an El Niño (2015�2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Niño 2016 � and three cruises during El Niño-neutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, mass-specific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention  
  Address Deep-Sea Research Part I  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 966  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)