Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bourassa, M.A., and P.J. Hughes url  doi
openurl 
  Title Surface Heat Fluxes and Wind Remote Sensing Type $loc['typeBook Chapter']
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 245-270  
  Keywords HEAT; OCEAN SURFACE; WINDS; SCATTEROMETERS; FLUXE; STRESS; RESPONSES  
  Abstract The exchange of heat and momentum through the air-sea surface are critical aspects of ocean forcing and ocean modeling. Over most of the global oceans, there are few in situ observations that can be used to estimate these fluxes. This chapter provides background on the calculation and application of air-sea fluxes, as well as the use of remote sensing to calculate these fluxes. Wind variability makes a large contribution to variability in surface fluxes, and the remote sensing of winds is relatively mature compared to the air sea differences in temperature and humidity, which are the other key variables. Therefore, the remote sensing of wind is presented in greater detail. These details enable the reader to understand how the improper use of satellite winds can result in regional and seasonal biases in fluxes, and how to calculate fluxes in a manner that removes these biases. Examples are given of high-resolution applications of fluxes, which are used to indicate the strengths and weakness of satellite-based calculations of ocean surface fluxes.  
  Address  
  Corporate Author Thesis  
  Publisher GODAE OceanView Place of Publication Tallahassee, FL Editor Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 947  
Permanent link to this record
 

 
Author Hughes, P. J. url  openurl
  Title The Influence of Small-Scale Sea Surface Temperature Gradients on Surface Vector Winds and Subsequent Impacts on Oceanic Ekman Pumping Type $loc['typeManuscript']
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Air-Sea Interaction; Sea Surface Temperature Gradients; SST-wind relationship; Surface Vector Winds  
  Abstract  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 162  
Permanent link to this record
 

 
Author Hite, M. M. url  openurl
  Title Vorticity-Based Detection of Tropical Cyclogenesis Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Quikscat, Seawinds, Tropical Disturbance, Tropical Cyclogenesis, Vorticity  
  Abstract Ocean wind vectors from the SeaWinds scatterometer on QuikSCAT and GOES imagery are used to develop an objective technique that can detect and monitor tropical disturbances associated with the early stages of tropical cyclogenesis in the Atlantic basin. The technique is based on identification of surface vorticity and wind speed signatures that exceed certain threshold magnitudes, with vorticity averaged over an appropriate spatial scale. The threshold values applied herein are determined from the precursors of 15 tropical cyclones during the 1999-2004 Atlantic hurricane seasons using research-quality QuikSCAT data. Tropical disturbances are found for these cases within a range of 19 hours to 101 hours before classification as tropical cyclones by the National Hurricane Center (NHC). The 15 cases are further subdivided based upon their origination source (i.e., easterly wave, upper-level cut-off low, stagnant frontal zone, etc). Primary focus centers on the cases associated with tropical waves, since these waves account for approximately 63% of all Atlantic tropical cyclones. The detection technique illustrates the ability to track these tropical disturbances from near the coast of Africa. Analysis of the pre-tropical cyclone (TC) tracks for these cases depict stages, related to wind speed and precipitation, in the evolution of an easterly wave to tropical cyclone.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 616  
Permanent link to this record
 

 
Author May, J url  openurl
  Title Quantifying Variance Due to Temporal and Spatial Difference Between Ship and Satellite Winds Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords QuikSCAT, Winds, SAMOS, Error variance, Collocation  
  Abstract Ocean vector winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite can be validated with in situ data. Ideally the comparison in situ data would be collocated in both time and space to the satellite overpass; however, this is rarely the case because of the time sampling interval of the in situ data and the sparseness of data. To compensate for the lack of ideal collocations, in situ data that are within a certain time and space range of the satellite overpass are used for comparisons. To determine the total amount of random observational error, additional uncertainty from the temporal and spatial difference must be considered along with the uncertainty associated with the data sets. The purpose of this study is to quantify the amount of error associated with the two data sets, as well as the amount of error associated with the temporal and/or spatial difference between two observations. The variance associated with a temporal difference between two observations is initially examined in an idealized case that includes only Shipboard Automated Meteorological and Oceanographic System (SAMOS) one-minute data. Temporal differences can be translated into spatial differences by using Taylor's hypothesis. The results show that as the time difference increases, the amount of variance increases. Higher wind speeds are also associated with a larger amount of variance. Collocated SeaWinds and SAMOS observations are used to determine the total variance associated with a temporal (equivalent) difference from 0 to 60 minutes. If the combined temporal and spatial difference is less than 25 minutes (equivalent), the variance associated with the temporal and spatial difference is offset by the observational errors, which are approximately 1.0 m2s-2 for wind speeds between 4 and 7 ms-1 and approximately 1.5 m2s-2 for wind speeds between 7 and 12 ms-1. If the combined temporal and spatial difference is greater than 25 minutes (equivalent), then the variance associated with the temporal and spatial difference is no longer offset by the variance associated with observational error in the data sets; therefore, the total variance gradually increases as the time difference increases.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 575  
Permanent link to this record
 

 
Author Lombardi, K. C. url  openurl
  Title Resolving the Diurnal and Synoptic Variance of Scatterometer Vector Wind Observations Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Rotary Spectra, Least Squares Regression, QSCAT, Midori2, Oceanic Winds  
  Abstract Scatterometer observations of vector winds are used to examine the amplitudes of synoptic and diurnal cycles. Scatterometers have the advantage of providing global coverage over water; however, irregular temporal sampling complicates the analyses. A least squares technique is used in determination of the amplitudes and phases of the diurnal and synoptic cycles on spatial scales of 5°, 15°, and 30°. In open ocean areas and regions with sufficient open water, the magnitudes of the diurnal and synoptic cycles are 1.0 ms-1 and 3.5ms-1, respectively. Diurnal amplitudes are highest in the polar regions and close to land surfaces due to sea breeze effects. The fraction of variance explained by the diurnal cycle is greatest near the equator. Synoptic amplitudes are consistently larger downwind of land from storm tracks and in the southern polar region as the time analyzed is during the southern winter season.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OSU Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 624  
Permanent link to this record
 

 
Author Hoffman, R.N.; Privé, N.; Bourassa, M. url  doi
openurl 
  Title Comments on “Reanalyses and Observations: What's the Difference?” Type $loc['typeJournal Article']
  Year 2017 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume 98 Issue 11 Pages 2455-2459  
  Keywords GEOPHYSICAL DATA; marine surface winds; energy and water cycles  
  Abstract Are there important differences between reanalysis data and familiar observations and measurements? If so, what are they? This essay evaluates four possible answers that relate to: the role of inference, reliance on forecasts, the need to solve an ill-posed inverse problem, and understanding of errors and uncertainties. The last of these is argued to be most significant. The importance of characterizing uncertainties associated with results—whether those results are observations or measurements, analyses or reanalyses, or forecasts—is emphasized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 990  
Permanent link to this record
 

 
Author Dukhovskoy, D; Bourassa, M url  openurl
  Title Comparison of ocean surface wind products in the perspective of ocean modeling of the Nordic Seas Type $loc['typeConference Article']
  Year 2011 Publication OCEANS 2011 Abbreviated Journal  
  Volume Issue Pages  
  Keywords scatterometer winds; Arctic Ocean; ocean modeling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MTS/IEEE OCEANS Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 315  
Permanent link to this record
 

 
Author Bourassa, MA; Weissman, DE url  openurl
  Title The development and application of a sea surface stress model function for the QuikSCAT and ADEOS-II SeaWinds scatterometers Type $loc['typeConference Article']
  Year 2003 Publication IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) Abbreviated Journal  
  Volume Issue Pages 239-241  
  Keywords component; surface stress; SeaWinds; scatterometer; validation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003)  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 485  
Permanent link to this record
 

 
Author Nyadjro, E.S.; Jensen, T.G.; Richman, J.G.; Shriver, J.F. url  doi
openurl 
  Title On the Relationship Between Wind, SST, and the Thermocline in the Seychelles-Chagos Thermocline Ridge Type $loc['typeJournal Article']
  Year 2017 Publication IEEE Geoscience and Remote Sensing Letters Abbreviated Journal IEEE Geosci. Remote Sensing Lett.  
  Volume 14 Issue 12 Pages 2315-2319  
  Keywords Altimetry; HYbrid Coordinate Ocean Model (HYCOM); Indian Ocean Dipole (IOD); ocean-atmosphere coupling; Rossby waves; sea surface temperature (SST); thermocline depth; winds  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1545-598X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 465  
Permanent link to this record
 

 
Author Hilburn, K.A. url  doi
openurl 
  Title Development of scatterometer-derived surface pressures for the Southern Ocean Type $loc['typeJournal Article']
  Year 2003 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 108 Issue C7 Pages  
  Keywords scatterometer; surface pressure; variational techniques; Southern Ocean; SeaWinds; QuikSCAT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding NASA, NOAA, ONR Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 477  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)