Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ali, M.M.; Bhat, G.S.; Long, D.G.; Bharadwaj, S.; Bourassa, M.A. url  doi
openurl 
  Title Estimating Wind Stress at the Ocean Surface From Scatterometer Observations Type $loc['typeJournal Article']
  Year 2013 Publication IEEE Geoscience and Remote Sensing Letters Abbreviated Journal IEEE Geosci. Remote Sensing Lett.  
  Volume 10 Issue 5 Pages 1129-1132  
  Keywords Atmospheric stability; neutral stability; scatterometer; wind stress  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1545-598X ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 184  
Permanent link to this record
 

 
Author Ali, M.M.; Bhowmick, S.A.; Sharma, R.; Chaudhury, A.; Pezzullo, J.C.; Bourassa, M.A.; Ramana, I.V.; Niharika, K. url  doi
openurl 
  Title An Artificial Neural Network Model Function (AMF) for SARAL-Altika Winds Type $loc['typeJournal Article']
  Year 2015 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing  
  Volume 8 Issue 11 Pages 5317-5323  
  Keywords AltiKa; artificial neural network (ANN); geophysical data records; wind speed  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-1404 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 118  
Permanent link to this record
 

 
Author Ali, M.M.; Bourassa, M.A.; Bhowmick, S.A.; Sharma, R.; Niharika, K. url  doi
openurl 
  Title Retrieval of Wind Stress at the Ocean Surface From AltiKa Measurements Type $loc['typeJournal Article']
  Year 2016 Publication IEEE Geoscience and Remote Sensing Letters Abbreviated Journal IEEE Geosci. Remote Sensing Lett.  
  Volume 13 Issue 6 Pages 821-825  
  Keywords AltiKa; artificial neural networks (ANNs); wind stress  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1545-598X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 29  
Permanent link to this record
 

 
Author Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; Evers-King, H.; Esau, I.; Johannessen, J.A.; Clayson, C.A.; Pinker, R.T.; Grodsky, S.A.; Bourassa, M.; Smith, S.R.; Haines, K.; Valdivieso, M.; Merchant, C.J.; Chapron, B.; Anderson, A.; Hollmann, R.; Josey, S.A. url  doi
openurl 
  Title Review and assessment of latent and sensible heat flux accuracy over the global oceans Type $loc['typeJournal Article']
  Year 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 201 Issue Pages 196-218  
  Keywords Ocean Heat Flux; Latent heat flux; Sensible heat flux; Ocean heat content; Scatterometer; Surface wind; Specfic air humidity; OceanSites; Remotely sensed data  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 232  
Permanent link to this record
 

 
Author Bourassa, M.A.; McBeth Ford, K. url  doi
openurl 
  Title Uncertainty in Scatterometer-Derived Vorticity Type $loc['typeJournal Article']
  Year 2010 Publication Journal of Atmospheric and Oceanic Technology Abbreviated Journal J. Atmos. Oceanic Technol.  
  Volume 27 Issue 3 Pages 594-603  
  Keywords Satellite observations; Wind; Instrumentation/sensors  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0739-0572 ISBN Medium  
  Area Expedition Conference  
  Funding OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 365  
Permanent link to this record
 

 
Author Bourassa, MA; Weissman, DE url  openurl
  Title The development and application of a sea surface stress model function for the QuikSCAT and ADEOS-II SeaWinds scatterometers Type $loc['typeConference Article']
  Year 2003 Publication IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) Abbreviated Journal  
  Volume Issue Pages 239-241  
  Keywords component; surface stress; SeaWinds; scatterometer; validation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003)  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 485  
Permanent link to this record
 

 
Author Bourassa, M.A.; Legler, D.M.; O'Brien, J.J.; Smith, S.R. url  doi
openurl 
  Title SeaWinds validation with research vessels Type $loc['typeJournal Article']
  Year 2003 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.  
  Volume 108 Issue C2 Pages  
  Keywords remote sensing; SeaWinds; validation; ocean; winds  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding NASA, NSF, ONR Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 484  
Permanent link to this record
 

 
Author Bourassa, M.A., and P.J. Hughes url  doi
openurl 
  Title Surface Heat Fluxes and Wind Remote Sensing Type $loc['typeBook Chapter']
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 245-270  
  Keywords HEAT; OCEAN SURFACE; WINDS; SCATTEROMETERS; FLUXE; STRESS; RESPONSES  
  Abstract The exchange of heat and momentum through the air-sea surface are critical aspects of ocean forcing and ocean modeling. Over most of the global oceans, there are few in situ observations that can be used to estimate these fluxes. This chapter provides background on the calculation and application of air-sea fluxes, as well as the use of remote sensing to calculate these fluxes. Wind variability makes a large contribution to variability in surface fluxes, and the remote sensing of winds is relatively mature compared to the air sea differences in temperature and humidity, which are the other key variables. Therefore, the remote sensing of wind is presented in greater detail. These details enable the reader to understand how the improper use of satellite winds can result in regional and seasonal biases in fluxes, and how to calculate fluxes in a manner that removes these biases. Examples are given of high-resolution applications of fluxes, which are used to indicate the strengths and weakness of satellite-based calculations of ocean surface fluxes.  
  Address  
  Corporate Author Thesis  
  Publisher GODAE OceanView Place of Publication Tallahassee, FL Editor Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 947  
Permanent link to this record
 

 
Author Briggs, K. url  openurl
  Title ENSO Event Reproduction: A Comparison of an EOF vs. A Cyclostationary (CSEOF) Approach Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords EOF, Autoregression, Wind Stress, Sea Level Height, SST, ENSO, Regression, CSEOF, Cyclostationary  
  Abstract In past studies, El Niño-Southern Oscillation (ENSO) events have been linked to devastating weather extremes. Climate modeling of ENSO is often dependent on limited records of the pertinent physical variables, thus longer records of these variables is desirable. Noisy signals, such as monthly sea surface temperature, are good candidates for reproduction by several existing auto-regression techniques. Through auto-regression, influential principal component modes are broken down into a series of time points that are each dependent upon an optimal weighting of the surrounding points. Using these unique numerical relationships, a noisy signal can be reproduced by thus processing the leading modes and adding an artificial record of properly distributed noise. Statistical measures of important ENSO regions suggest that the nature of oceanic and atmospheric anomalous events is cyclic with respect to certain timescales; for example, the monthly timescale. To detect ENSO signals in the presence of a varying background noise field, the detection method should take into account the signal's strong phase-locking with this nested variation. Cyclostationary Emperical Orthogonal Functions (CSEOFs) are built upon the idea of nested cycles, unlike traditional EOFs, which incorporate a design that is better detailed for stationary processes. In this study, both EOF and CSEOF modes of a 50-year Pacific SST record are processed using an auto-regression technique, and several sets of artificial SST records are constructed. Appropriate statistical indices are applied to these artificial time series to ensure an acceptable consistency with the real record, and then artificial data is produced using the artificial time series. In all cases, the cyclostationary approach produces more realistic warm ENSO events with respect to timing, strength, and other traits than does the stationary approach. However, both methods produce only a fair representation of cold events, suggesting that further study is necessary for improvement of La Niña modeling. Shorter records of variables such as sea level height and Pacific wind stress anomalies can hinder the usefulness of auto-regression, owing to time point dependence on surrounding points. Using a regression technique to find an evolutionary consistency (i.e. physically consistent patterns) between one of these variables and a variable with a longer record (such as SST) can eliminate this problem. Once a regression relationship is found between two variables, the variable with the shorter record can be re-written to match the time evolution of the variable with the longer record. Here regression, both EOF and CSEOF, is performed on both sea surface temperature and sea level height (a 20-year record), and sea surface temperature and wind stress (a 39-year record). Once the regression relationships are found, artificial SST time series are incorporated in place of the original time series to produce several artificial 50-year SLH and wind stress data sets. 5 Pacific regions are chosen, and statistics and behavior of the artificial sets within these regions are compared to those of the original data. Once again the cyclostationary approach fares better than the stationary. In particular the EOF assumption of cross correlational symmetry fails to capture the direction-dependence of ENSO evolution, causing inconsistent ENSO behavior. This renders an EOF method insufficient for climate modeling and prediction, and implies that a better aim is to incorporate physical cyclic features via a cyclostationary method.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 614  
Permanent link to this record
 

 
Author Culin, J. C. url  openurl
  Title Wintertime ENSO Variability in Wind Direction Across the Southeast United States Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Wind Roses, Southeast United States, Surface Wind Direction, ENSO, NCEP/NCAR Reanalysis  
  Abstract Changes in wind direction in association with the phases of the El Niño-Southern Oscillation (ENSO) are identified over the Southeast region of the United States during the winter season (December-February). Wind roses, which depict the percentage of time the wind comes from each direction and can graphically identify the prevailing wind, are computed according to a 12-point compass for 24 stations in the region. Unfolding the wind rose into a 12-bin histogram visually demonstrates the peak frequencies in wind direction during each of the three (warm, cold and neutral) phases of ENSO. Normalized values represent the number of occurrences (counts) per month per ENSO phase, and comparison using percent changes illustrates the differences between phases. Based on similarities in wind direction characteristics, regional topography and results from a formal statistical test, stations are grouped into five geographic regions, with a representative station used to describe conditions in that region. Locations in South Florida show significant differences in the frequencies in wind direction from easterly directions during the cold phase and northerly directions during the warm phase. North Florida stations display cold phase southerly directions, and westerly and northerly directions during the warm phase, both of which are significant for much of the winter. Coastal Atlantic stations reveal winds from westerly directions for both phases. The Piedmont region demonstrates large variability in wind direction due to the influence from the Appalachian Mountains, but generally identifies warm phase and cold phase winds with more zonal influences rather than just from south or north. The Mountainous region also indicates southerly cold phase winds and northerly warm phase winds, but also reveals less of an influence from ENSO or significantly different distributions. Comparisons between observed patterns and those obtained using the NCEP/NCAR Reanalysis data reveal how the model-derived observations resolve the ENSO influence on surface wind direction at selected locations. Overall, resolution of the strength of the signals is not achieved, though the depiction of the general pattern is fair at two of the three locations. Connections between the synoptic flow and surface wind direction are examined via relationships to the storm track associated with the 250 hPa jet stream and sea level pressure patterns during each extreme ENSO phase. Discussion of reasons the NCEP reanalysis illustrates surface wind direction patterns different from those derived from observations is included.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 615  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)