|   | 
Details
   web
Records
Author Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R.
Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 140 Issue Pages 14-25
Keywords CALIFORNIA CURRENT ECOSYSTEM; OCEAN CARBON-CYCLE; COASTAL WATERS; FRONTAL ZONE; TIME-SERIES; FLUX; SINKING; SEA; PACIFIC; ZOOPLANKTON
Abstract Estimating interannual variability in carbon export is a key goal of many marine biogeochemical studies. However, due to variations in export mechanisms between regions, generalized models used to estimate global patterns in export often fail when used for intra-regional analysis. We present here a region-specific model of export production for the California Current Ecosystem (CCE) parameterized using intensive Lagrangian process studies conducted during El Niño-Southern Oscillation (ENSO) warm and neutral phases by the CCE Long-Term Ecological Research (LTER) program. We find that, contrary to expectations from prominent global algorithms, export efficiency (e-ratio = export / primary productivity) is positively correlated with temperature and negatively correlated with net primary productivity (NPP). We attribute these results to the substantial horizontal advection found within the region, and verify this assumption by using a Lagrangian particle tracking model to estimate water mass age. We further suggest that sinking particles in the CCE are comprised of a recently-produced, rapidly-sinking component (likely mesozooplankton fecal pellets) and a longer-lived, slowly-sinking component that is likely advected long distances prior to export. We determine a new algorithm for estimating particle export in the CCE from NPP (Export = 0.08 · NPP + 72 mg C m-2 d-1). We apply this algorithm to a two-decade long time series of NPP in the CCE to estimate spatial and interannual variability across multiple ENSO phases. Reduced export during the warm anomaly of 2014-2015 and El Niño 2015-2016 resulted primarily from decreased export in the coastal upwelling region of the CCE; the oligotrophic offshore region exhibited comparatively low seasonal and interannual variability in flux. The model resolves intra-regional patterns of in situ export measurements, and provides a valuable contrast to global export models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 984
Permanent link to this record
 

 
Author Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R.
Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 140 Issue Pages 14-25
Keywords california current ecosystem; coastal waters; flux; frontal zone; ocean carbon-cycle; oceanography; pacific; sea; sinking; time-series; Zooplankton
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1022
Permanent link to this record
 

 
Author Liu, M.; Lin, J.; Wang, Y.; Sun, Y.; Zheng, B.; Shao, J.; Chen, L.; Zheng, Y.; Chen, J.; Fu, T.-M.; Yan, Y.; Zhang, Q.; Wu, Z.
Title Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method Type $loc['typeJournal Article']
Year 2018 Publication Atmospheric Chemistry and Physics Abbreviated Journal Atmos. Chem. Phys.
Volume 18 Issue 17 Pages 12933-12952
Keywords TROPOSPHERIC NITROGEN-DIOXIDE; PROVINCIAL CAPITAL CITIES; CRITERIA AIR-POLLUTANTS; BOUNDARY-LAYER; NORTH CHINA; HILBERT SPECTRUM; UNITED-STATES; TIME-SERIES; OZONE; EMISSIONS
Abstract Eastern China (27-41 degrees N, 110-123 degrees E) is heavily polluted by nitrogen dioxide (NO2), particulate matter with aerodynamic diameter below 2.5 mu m (PM2.5), and other air pollutants. These pollutants vary on a variety of temporal and spatial scales, with many temporal scales that are nonperiodic and nonstationary, challenging proper quantitative characterization and visualization. This study uses a newly compiled EOF-EEMD analysis visualization package to evaluate the spatiotemporal variability of ground-level NO2, PM2.5, and their associations with meteorological processes over Eastern China in fall-winter 2013. Applying the package to observed hourly pollutant data reveals a primary spatial pattern representing Eastern China synchronous variation in time, which is dominated by diurnal variability with a much weaker day-to-day signal. A secondary spatial mode, representing north-south opposing changes in time with no constant period, is characterized by wind-related dilution or a buildup of pollutants from one day to another.

We further evaluate simulations of nested GEOS-Chem v9-02 and WRF/CMAQ v5.0.1 in capturing the spatiotemporal variability of pollutants. GEOS-Chem underestimates NO2 by about 17 mu g m(-3) and PM2.5 by 35 mu g m(-3 )on average over fall-winter 2013. It reproduces the diurnal variability for both pollutants. For the day-to-day variation, GEOS-Chem reproduces the observed north-south contrasting mode for both pollutants but not the Eastern China synchronous mode (especially for NO2). The model errors are due to a first model layer too thick (about 130 m) to capture the near-surface vertical gradient, deficiencies in the nighttime nitrogen chemistry in the first layer, and missing secondary organic aerosols and anthropogenic dust. CMAQ overestimates the diurnal cycle of pollutants due to too-weak boundary layer mixing, especially in the nighttime, and overestimates NO2 by about 30 mu g m(-3) and PM2.5 by 60 mu g m(-3). For the day-to-day variability, CMAQ reproduces the observed Eastern China synchronous mode but not the north-south opposing mode of NO2. Both models capture the day-to-day variability of PM2.5 better than that of NO2. These results shed light on model improvement. The EOF-EEMD package is freely available for noncommercial uses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 946
Permanent link to this record
 

 
Author Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R.
Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 140 Issue Pages 52-62
Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system KeyWords Plus:ZOOPLANKTON FECAL PELLETS; NORTH PACIFIC-OCEAN; CURRENT SYSTEM; SOUTHERN CALIFORNIA; UNDERWATER GLIDERS; CARBON EXPORT; ZONE; CHLOROPHYLL; STABILITY; EQUATIONS
Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 983
Permanent link to this record
 

 
Author Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D.
Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal
Volume Issue Pages
Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae
Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['yes']
Call Number COAPS @ user @ Serial 967
Permanent link to this record
 

 
Author Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 123 Issue 8 Pages 5808-5823
Keywords Iceland; Scotland overflow water; Charlie; Gibbs fracture zone; variability; volume transport; eddying simulation
Abstract Observations show that the westward transport of the Iceland&#8208;Scotland overflow water (ISOW) through the Charlie&#8208;Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35&#8208;year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large&#8208;scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid&#8208;Atlantic Ridge, suggesting an out&#8208;of&#8208;phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 952
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2020 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)