|   | 
Details
   web
Records
Author Smith, R. A.
Title Trends in Maximum and Minimum Temperature Deciles in Select Regions of the United States Type $loc['typeManuscript']
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords Long term temperature trends, Climate change, Statistical analysis, Climatology
Abstract Daily maximum and minimum temperature data from 758 COOP stations in nineteen states are used to create temperature decile maps. All stations used contain records from 1948 through 2004 and could not be missing more than 5 consecutive years of data. Missing data are replaced using a multiple linear regression technique from surrounding stations. For each station, the maximum and minimum temperatures are first sorted in ascending order for every two years (to reduce annual variability) and divided into ten equal parts (or deciles). The first decile represents the coldest temperatures, and the last decile contains the warmest temperatures. Patterns and trends in these deciles can be examined for the 57-year period. A linear least-squares regression method is used to calculate best-fit lines for each decile to determine the long-term trends at each station. Significant warming or cooling is determined using the Student's t-test, and bootstrapping the decile data will further examine the validity of significance. Two stations are closely examined. Apalachicola, Florida shows significant warming in its maximum deciles and significant cooling in its minimum deciles. The maximum deciles seem to be affected by some localized change. The minimum deciles are discontinuous, and the trends are a result of a minor station move. Columbus, Georgia has experienced significant warming in its minimum deciles, and this appears to be the result of an urban heat-island effect. The discontinuities seen in the Apalachicola case study illustrate the need for a quality control method. This method will eliminate stations from the regional analysis that experience large changes in the ten-year standard deviations within their time series. The regional analysis shows that most of the region is dominated by significant cooling in the maximum deciles and significant warming in the minimum deciles, with more variability in the lower deciles. Field significance testing is performed on subregions (based on USGS 2000 land cover data) and supports the findings from the regional analysis; it also isolates regions, such as the Florida peninsula and the Maryland/Delaware region, that appear to be affected by more local forcings.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 612
Permanent link to this record
 

 
Author Maue, R
Title Warm Seclusion Extratropical Cyclones Type $loc['typeManuscript']
Year 2010 Publication Abbreviated Journal
Volume Issue Pages
Keywords Tropical Cyclone, Extratropical Cyclone, Climatology, Warm Seclusion
Abstract The warm seclusion or mature stage of the extratropical cyclone lifecycle often has structural characteristics reminiscent of major tropical cyclones including eye-like moats of calm air at the barotropic warm-core center surrounded by hurricane force winds along the bent-back warm front. Many extratropical cyclones experience periods of explosive intensification or deepening (bomb) as a result of nonlinear dynamical feedbacks associated with latent heat release. Considerable dynamical structure changes occur during short time periods of several hours in which lower stratospheric and upper-tropospheric origin potential vorticity combines with ephemeral lower-tropospheric, diabatically generated potential vorticity to form a coherent, upright tower circulation. At the center, anomalously warm and moist air relative to the surrounding environment is secluded and may exist for days into the future. Even with the considerable body of research conducted during the last century, many questions remain concerning the warm seclusion process. The focus of this work is on the diagnosis, climatology, and synoptic-dynamic development of the warm seclusion and surrounding flank of intense winds. To develop a climatology of warm seclusion and explosive extratropical cyclones, current long-period reanalysis datasets are utilized along with storm tracking procedures and cyclone phase space diagnostics. Limitations of the reanalysis products are discussed with special focus on tropical cyclone diagnosis and the recent dramatic decrease in global accumulated tropical cyclone energy. A large selection of case studies is simulated with the Weather Research and Forecasting (WRF) mesoscale model using full-physics and “fake dry” adiabatic runs in order to capture the very fast warm seclusion development. Results are presented concerning the critical role of latent heat release and the combination of advective and diabatically generated potential vorticity in the generation of the coherent tower circulation characteristic of the warm seclusion. To motivate future research, issues related to predictability are discussed with focus on medium-range forecasts of varying extratropical cyclone lifecycles. Additional work is presented relating tropical cyclones and large-scale climate variability with special emphasis on the abrupt and dramatic decline in recent global tropical cyclone accumulated cyclone energy.
Address Department of Meteorology
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 570
Permanent link to this record
 

 
Author Laurencin, C.; Misra, V.
Title Characterizing the Variations of the motion of the North Atlantic tropical cyclones Type $loc['typeJournal Article']
Year 2018 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys
Volume 130 Issue 303 Pages 1-12
Keywords climatology; interannual scales; environment
Abstract In this study, we examine the seasonal and interannual variability of the North Atlantic (NATL) tropical cyclone (TC) motion from the historical Hurricane Database (HURDAT2) over the period 1988-2014. We characterize these motions based on their position, lifecycle, and seasonal cycle. The main findings of this study include: (1) of the 11,469 NATL TC fixes examined between 1988 and 2014, 81% of them had a translation speed of < 20 mph; (2) TCs in the deep tropics of the NATL are invariably slow-moving in comparison with TCs in higher latitudes. Although fast-moving TCs (> 40 mph) are exclusively found north of 30 N, the slow-moving TCs have a wide range of latitude. This is largely a consequence of the background steering flow being weaker (stronger) in the tropical (higher) latitudes with a minimum around the subtropical latitudes of NATL; (3) there is an overall decrease in the frequency of all categories of translation speed of TCs in warm relative to cold El Niño Southern Oscillation (ENSO) years. However, in terms of the percentage change, TCs with a translation speed in the range of 10-20 mph display the most change (42%) in warm relative to cold ENSO years; and (4) there is an overall decrease in frequency across all categories of TC translation speed in small relative to large Atlantic Warm Pool years, but in terms of percentage change in the frequency of TCs, there is a significant and comparable change in the frequency over a wider range of translation speeds than the ENSO composites. This last finding suggests that Atlantic Warm Pool variations have a more profound impact on the translation speed of Atlantic TCs than ENSO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 991
Permanent link to this record
 

 
Author Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F.
Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews
Volume 192 Issue Pages 282-299
Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE
Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0277-3791 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 971
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)