Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baigorria, G.; Jones, J.; Shin, D.; Mishra, A.; Ingram, K. T., Jones, J. W., O'Brien, J. J., Roncoli, M. C., Fraisse, C., Breuer, N. E., Bartels, W.-L., Zierden, D. F., Letson, D. url  doi
openurl 
  Title Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs Type $loc['typeJournal Article']
  Year 2007 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 34 Issue Pages 211-222  
  Keywords crop yield forecasts; regional circulation models; crop models; bias correction; seasonal climate forecasts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 421  
Permanent link to this record
 

 
Author Baigorria, G.A.; Jones, J.W.; O'Brien, J.J. url  doi
openurl 
  Title Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model Type $loc['typeJournal Article']
  Year 2008 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 148 Issue 8-9 Pages 1353-1361  
  Keywords crop yield forecast; regional circulation models; crop models; bias-correction; principal components; statistical downscaling; CERES-Maize  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 407  
Permanent link to this record
 

 
Author Engelman, M. B. url  openurl
  Title A Validation of the FSU/COAPS Climate Model Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Crop Models, Skill Scores, Seasonal Prediction, Extreme Events  
  Abstract This study examines the predictability of the Florida State University/Center for Oceanic and Atmospheric Prediction Studies (FSU/COAPS) climate model, and is motivated by the model's potential use in crop modeling. The study also compares real-time ensemble runs (created using persisted SST anomalies) to hindcast ensemble runs (created using weekly updated SST) to asses the effect of SST anomalies on forecast error. Wintertime (DJF, 2 month lead time) surface temperature and precipitation forecasts over the southeastern United States (Georgia, Alabama, and Florida) are evaluated because of the documented links between tropical Pacific SST anomalies and climate in the southeastern United States during the winter season. The global spectral model (GSM) runs at a T63 resolution and then is dynamically downscaled to a 20 x 20 km grid over the southeastern United States using the FSU regional spectral model (RSM). Seasonal, monthly, and daily events from the October 2004 and 2005 model runs are assessed. Seasonal (DJF) plots of real-time forecasts indicate the model is capable of predicting wintertime maximum and minimum temperatures over the southeastern United States. The October 2004 and 2005 real-time model runs both produce temperature forecasts with anomaly errors below 3°C, correlations close to one, and standard deviations similar to observations. Real-time precipitation forecasts are inconsistent. Error in the percent of normal precipitation vary from greater than 100% in the 2004/2005 forecasts to less than 35% error in the 2005/2006 forecasts. Comparing hindcast runs to real-time runs reveals some skill is lost in precipitation forecasts when using a method of SST anomaly persistence if the SST anomalies in the equatorial Pacific change early in the forecast period, as they did for the October 2004 model runs. Further analysis involving monthly and daily model data as well as Brier scores (BS), relative operating characteristics (ROC), and equitable threat scores (ETS), are also examined to confirm these results.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 607  
Permanent link to this record
 

 
Author Fraisse, C.W.; Breuer, N.E.; Zierden, D.; Bellow, J.G.; Paz, J.; Cabrera, V.E.; Garcia y Garcia, A.; Ingram, K.T.; Hatch, U.; Hoogenboom, G.; Jones, J.W.; O'Brien, J.J. url  doi
openurl 
  Title AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA Type $loc['typeJournal Article']
  Year 2006 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture  
  Volume 53 Issue 1 Pages 13-27  
  Keywords crop models climate variability; decision making; ENSO; El Nino; extension  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1699 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)