|   | 
Details
   web
Records
Author (up) Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J.
Title The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations Type $loc['typeJournal Article']
Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 122 Issue 11 Pages 9126-9143
Keywords eddy available potential energy; mesoscale eddies; mixing; model-data comparison; ocean energy reservoirs; Argo
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 464
Permanent link to this record
 

 
Author (up) Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J.
Title The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations: GLOBAL LOW-FREQUENCY EDDY APE Type $loc['typeJournal Article']
Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 122 Issue 11 Pages 9126-9143
Keywords eddy available potential energy; mesoscale eddies; mixing; model‐ data comparison; ocean energy reservoirs; Argo
Abstract Global maps of the mesoscale eddy available potential energy (EAPE) field at a depth of 500 m are created using potential density anomalies in a high‐resolution 1/12.5° global ocean model. Maps made from both a free‐running simulation and a data‐assimilative reanalysis of the HYbrid Coordinate Ocean Model (HYCOM) are compared with maps made by other researchers from density anomalies in Argo profiles. The HYCOM and Argo maps display similar features, especially in the dominance of western boundary currents. The reanalysis maps match the Argo maps more closely, demonstrating the added value of data assimilation. Global averages of the simulation, reanalysis, and Argo EAPE all agree to within about 10%. The model and Argo EAPE fields are compared to EAPE computed from temperature anomalies in a data set of “moored historical observations” (MHO) in conjunction with buoyancy frequencies computed from a global climatology. The MHO data set allows for an estimate of the EAPE in high‐frequency motions that is aliased into the Argo EAPE values. At MHO locations, 15–32% of the EAPE in the Argo estimates is due to aliased motions having periods of 10 days or less. Spatial averages of EAPE in HYCOM, Argo, and MHO data agree to within 50% at MHO locations, with both model estimates lying within error bars observations. Analysis of the EAPE field in an idealized model, in conjunction with published theory, suggests that much of the scatter seen in comparisons of different EAPE estimates is to be expected given the chaotic, unpredictable nature of mesoscale eddies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 992
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)