Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Harris, R.; Pollman, C.; Hutchinson, D.; Landing, W.; Axelrad, D.; Morey, S.L.; Dukhovskoy, D.; Vijayaraghavan, K. url  doi
openurl 
  Title A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 53-63  
  Keywords Animals; Calibration; Environmental Exposure; Fishes/metabolism; Humans; Mercury/*chemistry/metabolism; *Models, Theoretical; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.  
  Address Reed Harris Environmental Ltd., 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23102631 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 234  
Permanent link to this record
 

 
Author (up) Harris, R.; Pollman, C.; Landing, W.; Evans, D.; Axelrad, D.; Hutchinson, D.; Morey, S.L.; Rumbold, D.; Dukhovskoy, D.; Adams, D.H.; Vijayaraghavan, K.; Holmes, C.; Atkinson, R.D.; Myers, T.; Sunderland, E. url  doi
openurl 
  Title Mercury in the Gulf of Mexico: sources to receptors Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 42-52  
  Keywords Air Pollutants/chemistry; Animals; Environmental Exposure; Food Chain; Geologic Sediments/chemistry; Humans; Mercury/*chemistry/metabolism; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web.  
  Address Reed Harris Environmental Ltd, 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23098613 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 233  
Permanent link to this record
 

 
Author (up) Laurencin, C.; Misra, V. url  doi
openurl 
  Title Characterizing the Variations of the motion of the North Atlantic tropical cyclones Type $loc['typeJournal Article']
  Year 2018 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 130 Issue 303 Pages 1-12  
  Keywords climatology; interannual scales; environment  
  Abstract In this study, we examine the seasonal and interannual variability of the North Atlantic (NATL) tropical cyclone (TC) motion from the historical Hurricane Database (HURDAT2) over the period 1988-2014. We characterize these motions based on their position, lifecycle, and seasonal cycle. The main findings of this study include: (1) of the 11,469 NATL TC fixes examined between 1988 and 2014, 81% of them had a translation speed of < 20 mph; (2) TCs in the deep tropics of the NATL are invariably slow-moving in comparison with TCs in higher latitudes. Although fast-moving TCs (> 40 mph) are exclusively found north of 30 N, the slow-moving TCs have a wide range of latitude. This is largely a consequence of the background steering flow being weaker (stronger) in the tropical (higher) latitudes with a minimum around the subtropical latitudes of NATL; (3) there is an overall decrease in the frequency of all categories of translation speed of TCs in warm relative to cold El Niño Southern Oscillation (ENSO) years. However, in terms of the percentage change, TCs with a translation speed in the range of 10-20 mph display the most change (42%) in warm relative to cold ENSO years; and (4) there is an overall decrease in frequency across all categories of TC translation speed in small relative to large Atlantic Warm Pool years, but in terms of percentage change in the frequency of TCs, there is a significant and comparable change in the frequency over a wider range of translation speeds than the ENSO composites. This last finding suggests that Atlantic Warm Pool variations have a more profound impact on the translation speed of Atlantic TCs than ENSO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 991  
Permanent link to this record
 

 
Author (up) Ramírez-Rodrigues, M.A.; Alderman, P.D.; Stefanova, L.; Cossani, C.M.; Flores, D.; Asseng, S. url  doi
openurl 
  Title The value of seasonal forecasts for irrigated, supplementary irrigated, and rainfed wheat cropping systems in northwest Mexico Type $loc['typeJournal Article']
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 147 Issue Pages 76-86  
  Keywords Arid environment; litigation; Supplementary irrigation; Wheat; Mexico; Seasonal forecast  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 49  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)