|   | 
Details
   web
Records
Author Ahern, K. K.
Title Analysis of Polar Mesocyclonic Surface Turbulent Fluxes in the Arctic System Reanalysis (ASRv1) Dataset Type $loc['typeManuscript']
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords arctic; cyclone; low; model; polar; reanalysis
Abstract
Address Department of Earth, Ocean, and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 93
Permanent link to this record
 

 
Author Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J.
Title Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 48 Issue 6 Pages 1409-1431
Keywords Baroclinic flows; Internal waves; Nonlinear dynamics; Ocean dynamics; Baroclinic models; Ocean models
Abstract The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%�10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 976
Permanent link to this record
 

 
Author Arrocha, G.
Title Variability of Intraseasonal Precipitation Extremes Associated with ENSO in Panama Type $loc['typeManuscript']
Year 2006 Publication Abbreviated Journal
Volume Issue Pages
Keywords Extreme Events Central America, Low Level Circulation
Abstract Extensive analysis has been conducted over past decades showing the impacts of El Niño-Southern Oscillation (ENSO) on various regions throughout the world. However, these studies have not analyzed data from many stations in Panama, or they have not analyzed long periods of observations. For these reasons, they often miss climatological differences within the region induced by topography, or they do not possess enough observations to adequately study its climatology. Accordingly, the current study focuses on ENSO impacts on precipitation specific to the Isthmus of Panama. Results will be useful for agricultural and water resources planning and Panama Canal operations. Monthly total precipitation data were provided by Empresa de Transmisión Eléctrica S.A., which includes 32 stations with records from 1960 to 2004. The year is split into three seasons: two wet seasons (Early and Late Wet), one dry season (Dry). The country is also divided into regions according to similarities in the stations' climatology and geographic locations. Upper and lower precipitation extremes are associated with one of the three ENSO phases (warm, cold or neutral) to estimate their percentages of occurrences. The differences between each ENSO phases' seasonal precipitation distributions are statistically examined. Statistical analyses show effects of ENSO phases that vary by season and geographical region. Cold and warm ENSO years affect the southwestern half of the country considerably during the Late Wet season. Cold ENSO phases tend to increase rainfall, and the warm phase tends to decrease it. The opposite is true for the Caribbean coast. The Dry season experiences drier conditions in warm ENSO years, and the Early Wet season does not show any statistically significant difference between ENSO years' rainfall distributions.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 620
Permanent link to this record
 

 
Author Bastola, S.; Misra, V.; Li, H.
Title Seasonal Hydrological Forecasts for Watersheds over the Southeastern United States for the Boreal Summer and Fall Seasons Type $loc['typeJournal Article']
Year 2013 Publication Earth Interactions Abbreviated Journal Earth Interact.
Volume 17 Issue 25 Pages 1-22
Keywords Seasonal climate forecast; Ensemble streamflow prediction; Rainfall–runoff model
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1087-3562 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 207
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Morey, S.L.; O'Brien, J.J.
Title Generation of baroclinic topographic waves by a tropical cyclone impacting a low-latitude continental shelf Type $loc['typeJournal Article']
Year 2009 Publication Continental Shelf Research Abbreviated Journal Continental Shelf Research
Volume 29 Issue 1 Pages 333-351
Keywords Baroclinic motion; Topographic waves; Low-frequency internal waves; Hurricanes; Caribbean Sea
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-4343 ISBN Medium
Area Expedition Conference
Funding NOAA, NASA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 397
Permanent link to this record
 

 
Author Holbach, H.M.; Bourassa, M.A.
Title The Effects of Gap-Wind-Induced Vorticity, the Monsoon Trough, and the ITCZ on East Pacific Tropical Cyclogenesis Type $loc['typeJournal Article']
Year 2014 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.
Volume 142 Issue 3 Pages 1312-1325
Keywords Central America; Remote sensing; Vorticity; Valley/mountain flows; Tropical cyclones; Cyclogenesis/cyclolysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-0644 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 130
Permanent link to this record
 

 
Author Liu, J.; Feld, D.; Xue, Y.; Garcke, J.; Soddemann, T.; Pan, P.
Title An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data Type $loc['typeJournal Article']
Year 2016 Publication International Journal of Digital Earth Abbreviated Journal International Journal of Digital Earth
Volume 9 Issue 8 Pages 748-765
Keywords Digital earth; high-performance computing; GPU; multi-core; hybrid parallel pattern; aerosol optical depth; retrieval workflow
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1753-8947 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 86
Permanent link to this record
 

 
Author Morey, S.L.; Dukhovskoy, D.S.
Title A downscaling method for simulating deep current interactions with topography – Application to the Sigsbee Escarpment Type $loc['typeJournal Article']
Year 2013 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 69 Issue Pages 50-63
Keywords Ocean modeling; Model nesting; Topographic flows; USA; Gulf of Mexico; Sigsbee Escarpment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding DeepStar, HYCOM Consortium Approved $loc['no']
Call Number COAPS @ mfield @ Serial 183
Permanent link to this record
 

 
Author Nguyen, T. T.
Title Variability of Cross-Slope Flow in the Desoto Canyon Region Type $loc['typeManuscript']
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords cross-slope flow; DeSoto Canyon region; Loop Current's impact; mesoscale circulation; upwelling and downwelling; wind-driven upwelling
Abstract
Address Department of Earth, Ocean, and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 167
Permanent link to this record
 

 
Author Putnam, W. M.
Title Development of the Finite-Volume Dynamical Core on the Cubed-Sphere Type $loc['typeManuscript']
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords Cubed-Sphere, Shallow Water, Advection, Dynamical Core, Finite-Volume
Abstract The finite-volume dynamical core has been developed for quasi-uniform cubed-sphere grids within a flexible modeling framework for direct implementation as a modular component within the global modeling efforts at NASA, GFDL-NOAA, NCAR, DOE and other interested institutions. The shallow water equations serve as a dynamical framework for testing the implementation and the variety of quasi-orthogonal cubed-sphere grids ranging from conformal mappings to those numerically generated via elliptic solvers. The cubed-sphere finite-volume dynamical core has been parallelized with a 2-dimensional X-Y domain decomposition to achieve optimal scalability to 100,000s of processors on today's high-end computing platforms at horizontal resolutions of 0.25-degrees and finer. The cubed-sphere fvcore is designed to serve as a framework for hydrostatic and non-hydrostatic global simulations at climate (4- to 1-deg) and weather (25- to 5-km) resolutions, pushing the scale of global atmospheric modeling from the climate/synoptic scale to the meso- and cloud-resolving scale.
Address Department of Meteorology
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 588
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)