Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kvaleberg, E url  openurl
  Title Generation of Cold Core Filaments and Eddies Through Baroclinic Instability on a Continental Shelf Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Eddies, Baroclinic Instability, Filaments, Numerical Modeling, Shelf  
  Abstract The formation of cold core filaments on an idealized continental shelf is investigated using a numerical model to simulate the ocean's response to surface cooling. A horizontal density gradient forms because of uneven buoyancy loss due to the sloping bottom, and this gradient induces an alongshelf current in thermal wind balance, that in time becomes unstable. As the instabilities grow, filaments, and later eddies, are generated so that dense water near the coast is mixed offshore. Scaling arguments of the filament wavelength indicate that the current is baroclinically unstable, and an analytical model of the frontal expansion with time is in very good agreement with the simulations. This study was inspired by satellite observations of sea surface temperature on the West Florida Shelf during the winter months, in which it is clearly seen that cold core filaments extend from a thermal front. Numerical experiments are therefore designed to allow for reliable comparisons with conditions in this region.  
  Address Department of Oceanography  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 592  
Permanent link to this record
 

 
Author Le Sommer, Julien; Chassignet, E.P.; Wallcraft, A. J. url  openurl
  Title Ocean Circulation Modeling for Operational Oceanography: Current Status and Future Challenges Type $loc['typeBook Chapter']
  Year 2018 Publication New Frontiers in Operational Oceanography Abbreviated Journal  
  Volume Issue Pages 289-305  
  Keywords OCEAN MODELING; OCEAN CIRCULATION; PARAMETERIZATIONS  
  Abstract This chapter focuses on ocean circulation models used in operational oceanography, physical oceanography and climate science. Ocean circulation models area particular branch of ocean numerical modeling that focuses on the representation of ocean physical properties over spatial scales ranging from the global scale to less than a kilometer and time scales ranging from hours to decades. As such, they are an essential build-ing block for operational oceanography systems and their design receives a lot of attention from operational and research centers.  
  Address  
  Corporate Author Thesis  
  Publisher GODAE OceanView Place of Publication Tallahassee, FL Editor Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 948  
Permanent link to this record
 

 
Author Li, H.; Kanamitsu, M.; Hong, S.-Y. url  doi
openurl 
  Title California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system Type $loc['typeJournal Article']
  Year 2012 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res.  
  Volume 117 Issue D12 Pages  
  Keywords climate change; coupled model; reanalysis; upwelling; regional climate; regional ocean model  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 265  
Permanent link to this record
 

 
Author Li, H.; Kanamitsu, M.; Hong, S.-Y.; Yoshimura, K.; Cayan, D.R.; Misra, V. url  doi
openurl 
  Title A high-resolution ocean-atmosphere coupled downscaling of the present climate over California Type $loc['typeJournal Article']
  Year 2014 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 42 Issue 3-4 Pages 701-714  
  Keywords Regional climate; Coupled model; Ocean-atmosphere interaction; CCSM3; RSM; ROMS  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 136  
Permanent link to this record
 

 
Author Liu, B.; Zhou, T.; Lu, J. url  doi
openurl 
  Title Quantifying contributions of model processes to the surface temperature bias in FGOALS-g2 Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Advances in Modeling Earth Systems Abbreviated Journal J. Adv. Model. Earth Syst.  
  Volume 7 Issue 4 Pages 1519-1533  
  Keywords model bias; process-based decomposition; CFRAM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-2466 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 106  
Permanent link to this record
 

 
Author Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J. url  doi
openurl 
  Title The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations Type $loc['typeJournal Article']
  Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 122 Issue 11 Pages 9126-9143  
  Keywords eddy available potential energy; mesoscale eddies; mixing; model-data comparison; ocean energy reservoirs; Argo  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 464  
Permanent link to this record
 

 
Author Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J. url  doi
openurl 
  Title The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations: GLOBAL LOW-FREQUENCY EDDY APE Type $loc['typeJournal Article']
  Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 122 Issue 11 Pages 9126-9143  
  Keywords eddy available potential energy; mesoscale eddies; mixing; model‐ data comparison; ocean energy reservoirs; Argo  
  Abstract Global maps of the mesoscale eddy available potential energy (EAPE) field at a depth of 500 m are created using potential density anomalies in a high‐resolution 1/12.5° global ocean model. Maps made from both a free‐running simulation and a data‐assimilative reanalysis of the HYbrid Coordinate Ocean Model (HYCOM) are compared with maps made by other researchers from density anomalies in Argo profiles. The HYCOM and Argo maps display similar features, especially in the dominance of western boundary currents. The reanalysis maps match the Argo maps more closely, demonstrating the added value of data assimilation. Global averages of the simulation, reanalysis, and Argo EAPE all agree to within about 10%. The model and Argo EAPE fields are compared to EAPE computed from temperature anomalies in a data set of “moored historical observations” (MHO) in conjunction with buoyancy frequencies computed from a global climatology. The MHO data set allows for an estimate of the EAPE in high‐frequency motions that is aliased into the Argo EAPE values. At MHO locations, 15–32% of the EAPE in the Argo estimates is due to aliased motions having periods of 10 days or less. Spatial averages of EAPE in HYCOM, Argo, and MHO data agree to within 50% at MHO locations, with both model estimates lying within error bars observations. Analysis of the EAPE field in an idealized model, in conjunction with published theory, suggests that much of the scatter seen in comparisons of different EAPE estimates is to be expected given the chaotic, unpredictable nature of mesoscale eddies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 992  
Permanent link to this record
 

 
Author Magaldi, M.G.; Özgökmen, T.M.; Griffa, A.; Chassignet, E.P.; Iskandarani, M.; Peters, H. url  doi
openurl 
  Title Turbulent flow regimes behind a coastal cape in a stratified and rotating environment Type $loc['typeJournal Article']
  Year 2008 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 25 Issue 1-2 Pages 65-82  
  Keywords Cape; Headland; Eddy generation; Modeling; Form drag; Mixing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 417  
Permanent link to this record
 

 
Author Mahalakshmi, DV; Paul, A; Dutta, D; Ali, MM; Dadhwal, VK; REddy, RS; Jha, CD; Sharma, JR url  doi
openurl 
  Title Estimation of net surface radiation using eddy flux tower data over a tropical mangrove forest of Sundarban, West Bengal Type $loc['typeJournal Article']
  Year 2016 Publication Geofizika Abbreviated Journal  
  Volume 33 Issue 1 Pages 1-14  
  Keywords net surface radiation; artificial neural network; linear model; eddy flux tower  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 42  
Permanent link to this record
 

 
Author Michael, J-P url  openurl
  Title ENSO Fidelity in Two Coupled Models Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords General Circulation Model, El Nino, Coupled Model, Climate Model, ENSO  
  Abstract This study examines the fidelity of the ENSO simulation in two coupled model integrations and compares this with available global ocean data assimilation. The two models are CAM-HYCOM coupled model developed by the HYCOM Consortium and CCSM3.0. The difference between the two climate models is in the use of different ocean general circulation model (OGCM). The hybrid isopycnal-sigma-pressure coordinate ocean model Hybrid Coordinate Ocean Model (HYCOM) replaces the ocean model Parallel Ocean Program (POP) of the CCSM3.0. In both, the atmospheric general circulation model (AGCM) Community Atmosphere Model (CAM) is used. In this way the coupled systems are compared in a controlled setting so that the effects of the OGCM may be obtained. Henceforth the two models will be referred to as CAM-HYCOM and CAM-POP respectively. Comparison of 200 years of model output is used discarding the first 100 years to account for spin-up issues. Both models (CAM-HYCOM and CAM-POP) are compared to observational data for duration, intensity, and global impacts of ENSO. Based on the analysis of equatorial SST, thermocline depth, wind stress and precipitation, ENSO in the CAM-HYCOM model is weaker and farther east than observations while CAM-POP is zonal and extends west of the international dateline. CAM-POP also has an erroneous biennial cycle of the equatorial pacific SSTs. The analysis of the subsurface ocean advective terms highlights the problems of the model simulations.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)