Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Samuelsen, A url  openurl
  Title Modeling the Effect of Eddies and Advection on the Lower Trophic Ecosystem in the Northeast Tropical Pacific Type $loc['typeManuscript']
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Physical-Biological Interactions, Marine Ecosystem Modeling, Pacific Ocean, Gulf Of Tehuantepec, Costa Rica Dome, Cross-Shelf Transport, Eddies  
  Abstract A medium complexity, nitrogen-based ecosystem model is developed in order to simulate the ecosystem in the northeast tropical Pacific. Several physical processes have major impact on the ecosystem in this region, most importantly intense wind jets along the coast and upwelling at the Costa Rica Dome (CRD). The ecosystem model is run “offline”, using a realistic physical ocean model hindcast as input. The physical model is a subdomain of the global Navy Coastal Ocean Model, which is a hybrid sigma-z level model. The model assimilates Modular Ocean Data Assimilation System temperature and salinity profiles derived from altimetry and sea surface temperature data. The model is forced by daily heat and momentum fluxes, and therefore captures short-term wind events such as the Tehuantepec jet. Because the model has high horizontal resolution (~1/8 degree) and assimilates sea surface height data, it has a realistic representation of eddies and mesoscale variability. The ecosystem model includes two nutrients (nitrate and ammonium), two size-classes of phytoplankton, two size-classes of zooplankton, and detritus. The model is run for 4 years from 1999 to 2002, with analyses focused on 2000-2002. The model is validated using SeaWiFS data and ship-based observations from the STAR-cruises (Stenella Abundance Research Project) of 1999 and 2000. The northernmost and most intense of the wind jets along Central America is the Tehuantepec jet. The Tehuantepec jet is responsible for upwelling large amounts of nutrient rich water south of the Gulf of Tehuantepec. The jet also occasionally produce large anti-cyclonic eddies that transport organic matter away from the coast. Because organic matter that is transported into the open ocean will eventually sink to the deep ocean, this has implications for the carbon export in this region. The model results are used to calculate cross-shelf fluxes in this region in order to estimate how much organic material is transported across the shelf break. Results show that at the Gulf of Tehuantepec there is high offshore export of organic material, particularly during eddy generation events, but also in fall. The highest export is on the order of 10 Mg C per meter of coastline per day and happens during eddy events. During these events there is a comparable onshore flux to the south of the gulf. Typically there is onshore flux to the south of the gulf during the summer. The model estimated transport away from the coast at the Gulf of Tehuantepec is 167 Tg C/year, and the onshore transport to the south of the gulf is 704 Tg C/year. The second subject of interest is the CRD. In this region, upwelling at the surface is caused by Ekman upwelling during the summer, although the dome is thought to be present at depth throughout the year. The doming of the isotherms below the thermocline is a result of vortex stretching and is decoupled from the wind-driven processes at the surface. A mass-balance budget is calculated at the CRD, and the horizontal and vertical fluxes are related to the abundance of plankton at the dome. There is upwelling (7.2X10-2 Sv ) at the dome throughout the year, but around the location of the dome (90° W), the upwelling is largest in the winter. Further west, input of nutrients from below is larger in the fall and summer. The results suggest that about 80% of the nitrate that is supplied to the dome during summer is actually brought up to the west of the dome and transported eastward by the North Equatorial Counter Current.  
  Address Department of Oceanography  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 591  
Permanent link to this record
 

 
Author Steffen, J.; Bourassa, M. url  doi
openurl 
  Title Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 9 Pages 1951-1968  
  Keywords SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC  
  Abstract The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 970  
Permanent link to this record
 

 
Author Stukel, M.R.; Benitez-Nelson, C.R.; Decima, M.; Taylor, A.G.; Buchwald, C.; Landry, M.R. url  doi
openurl 
  Title The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 348-365  
  Keywords Eastern Tropical Pacific; biogeochemistry; carbon flux; nutrients; plankton  
  Abstract The Costa Rica Dome is a picophytoplankton-dominated, open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone. To investigate the efficiency of the biological pump in this unique area, we used shallow (90-150 m) drifting sediment traps and 234Th:238U deficiency measurements to determine export fluxes of carbon, nitrogen and phosphorus in sinking particles. Simultaneous measurements of nitrate uptake and shallow water nitrification allowed us to assess the equilibrium balance of new and export production over a monthly timescale. While f-ratios (new:total production) were reasonably high (0.36 +/- 0.12, mean +/- standard deviation), export efficiencies were considerably lower. Sediment traps suggested e-ratios (export/14C-primary production) at 90-100 m ranging from 0.053 to 0.067. ThE-ratios (234Th disequilibrium-derived export) ranged from 0.038 to 0.088. C:N and N:P stoichiometries of sinking material were both greater than canonical (Redfield) ratios or measured C:N of suspended particulates, and they increased with depth, suggesting that both nitrogen and phosphorus were preferentially remineralized from sinking particles. Our results are consistent with an ecosystem in which mesozooplankton play a major role in energy transfer to higher trophic levels but are relatively inefficient in mediating vertical carbon flux to depth, leading to an imbalance between new production and sinking flux.  
  Address Scripps Institution of Oceanography , University of California at San Diego , La Jolla, CA 92037 , USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275035; PMCID:PMC4889986 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 90  
Permanent link to this record
 

 
Author Tseng, Y.-heng; Lin, H.; Chen, H.-ching; Thompson, K.; Bentsen, M.; Böning, C.W.; Bozec, A.; Cassou, C.; Chassignet, E.; Chow, C.H.; Danabasoglu, G.; Danilov, S.; Farneti, R.; Fogli, P.G.; Fujii, Y.; Griffies, S.M.; Ilicak, M.; Jung, T.; Masina, S.; Navarra, A.; Patara, L.; Samuels, B.L.; Scheinert, M.; Sidorenko, D.; Sui, C.-H.; Tsujino, H.; Valcke, S.; Voldoire, A.; Wang, Q.; Yeager, S.G. url  doi
openurl 
  Title North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations Type $loc['typeJournal Article']
  Year 2016 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 104 Issue Pages 143-170  
  Keywords CORE global ocean-ice simulations; Kuroshio; Mode water; Subtropical cell; North Pacific simulations  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 55  
Permanent link to this record
 

 
Author Venugopal, T.; Ali, M.M.; Bourassa, M.A.; Zheng, Y.; Goni, G.J.; Foltz, G.R.; Rajeevan, M. doi  openurl
  Title Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall Type $loc['typeJournal Article']
  Year 2018 Publication SCIENTIFIC REPORTS Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages 12092  
  Keywords SEA-SURFACE TEMPERATURE; EL-NINO; EQUATORIAL PACIFIC; IMPACT; PREDICTION; ENSO; DIPOLE; REGION; SST  
  Abstract This study examines the benefit of using Ocean Mean Temperature (OMT) to aid in the prediction of the sign of Indian Summer Monsoon Rainfall (ISMR) anomalies. This is a statistical examination, rather than a process study. The thermal energy needed for maintaining and intensifying hurricanes and monsoons comes from the upper ocean, not just from the thin layer represented by sea surface temperature (SST) alone. Here, we show that the southwestern Indian OMT down to the depth of the 26 degrees C isotherm during January-March is a better qualitative predictor of the ISMR than SST. The success rate in predicting above- or below-average ISMR is 80% for OMT compared to 60% for SST. Other January-March mean climate indices (e.g., NINO3.4, Indian Ocean Dipole Mode Index, El Nino Southern Oscillation Modoki Index) have less predictability (52%, 48%, and 56%, respectively) than OMT percentage deviation (PD) (80%). Thus, OMT PD in the southwestern Indian Ocean provides a better qualitative prediction of ISMR by the end of March and indicates whether the ISMR will be above or below the climatological mean value.  
  Address Ministry of Earth Sciences, Government of India, New Delhi, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('0108244'); strtoupper('P').strtolower('MC6092415') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 972  
Permanent link to this record
 

 
Author Zhang, M.; Wu, Z.; Qiao, F. url  doi
openurl 
  Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 20 Pages 8541-8555  
  Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC  
  Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 950  
Permanent link to this record
 

 
Author Zhao, X.; Zhou, C.; Xu, X.; Ye, R.; Tian, J.; Zhao, W. url  openurl
  Title Deep Circulation in the South China Sea Simulated in a Regional Model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Sci. Discuss Abbreviated Journal Ocean Sci. Discuss  
  Volume Issue Pages  
  Keywords Sea Marine, Oceanography/CIMST, PacificOcean, continuous current-meter, deep circulation, deep western boundary  
  Abstract The South China Sea (SCS) is the largest marginal sea in the northwest Pacific Ocean. In this study, deep circulation in the SCS is investigated using results from eddy-resolving, regional simulations using the Hybrid Coordinate Ocean Model (HYCOM) verified by continuous current-meter observations. Analysis of these results provides a detailed spatial structure and temporal variability of the deep circulation in the SCS. The major features of the SCS deep circulation are a basin-scale cyclonic gyre and a concentrated deep western boundary current (DWBC). Transport of the DWBC is ∼ 2 Sv at 16.5° N with a width of ∼53 km. Flowing southwestward, the narrow DWBC becomes weaker with a wider range. The model results reveal the existence of 80- to 120-day oscillation in the deep northeastern circulation and the DWBC, which are also the areas with elevated eddy kinetic energy. This intraseasonal oscillation propagates northwestward with a velocity amplitude of ∼ 1.0 to 1.5 cm s-1. The distribution of mixing parameters in the deep SCS plays a role in both spatial structure and volume transport of the deep circulation. Compared with the northern shelf of the SCS with the Luzon Strait, deep circulation in the SCS is more sensitive to the large vertical mixing parameters of the Zhongsha Island Chain area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1013  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)