|   | 
Details
   web
Records
Author (up) Engelman, M. B.
Title A Validation of the FSU/COAPS Climate Model Type $loc['typeManuscript']
Year 2008 Publication Abbreviated Journal
Volume Issue Pages
Keywords Crop Models, Skill Scores, Seasonal Prediction, Extreme Events
Abstract This study examines the predictability of the Florida State University/Center for Oceanic and Atmospheric Prediction Studies (FSU/COAPS) climate model, and is motivated by the model's potential use in crop modeling. The study also compares real-time ensemble runs (created using persisted SST anomalies) to hindcast ensemble runs (created using weekly updated SST) to asses the effect of SST anomalies on forecast error. Wintertime (DJF, 2 month lead time) surface temperature and precipitation forecasts over the southeastern United States (Georgia, Alabama, and Florida) are evaluated because of the documented links between tropical Pacific SST anomalies and climate in the southeastern United States during the winter season. The global spectral model (GSM) runs at a T63 resolution and then is dynamically downscaled to a 20 x 20 km grid over the southeastern United States using the FSU regional spectral model (RSM). Seasonal, monthly, and daily events from the October 2004 and 2005 model runs are assessed. Seasonal (DJF) plots of real-time forecasts indicate the model is capable of predicting wintertime maximum and minimum temperatures over the southeastern United States. The October 2004 and 2005 real-time model runs both produce temperature forecasts with anomaly errors below 3°C, correlations close to one, and standard deviations similar to observations. Real-time precipitation forecasts are inconsistent. Error in the percent of normal precipitation vary from greater than 100% in the 2004/2005 forecasts to less than 35% error in the 2005/2006 forecasts. Comparing hindcast runs to real-time runs reveals some skill is lost in precipitation forecasts when using a method of SST anomaly persistence if the SST anomalies in the equatorial Pacific change early in the forecast period, as they did for the October 2004 model runs. Further analysis involving monthly and daily model data as well as Brier scores (BS), relative operating characteristics (ROC), and equitable threat scores (ETS), are also examined to confirm these results.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 607
Permanent link to this record
 

 
Author (up) Farneti, R.; Downes, S.M.; Griffies, S.M.; Marsland, S.J.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.; Bozec, A.; Canuto, V.M.; Chassignet, E.; Danabasoglu, G.; Danilov, S.; Diansky, N.; Drange, H.; Fogli, P.G.; Gusev, A.; Hallberg, R.W.; Howard, A.; Ilicak, M.; Jung, T.; Kelley, M.; Large, W.G.; Leboissetier, A.; Long, M.; Lu, J.; Masina, S.; Mishra, A.; Navarra, A.; George Nurser, A.J.; Patara, L.; Samuels, B.L.; Sidorenko, D.; Tsujino, H.; Uotila, P.; Wang, Q.; Yeager, S.G.
Title An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958-2007 in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
Year 2015 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 93 Issue Pages 84-120
Keywords Global ocean–sea ice modeling; Model comparisons; Southern Ocean meridional overturning circulation; Antarctic Circumpolar Current; Southern Ocean dynamics
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 103
Permanent link to this record
 

 
Author (up) Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; Griffies, S.M.; Hallberg, R.W.; Hanert, E.; Heimbach, P.; Hewitt, H.T.; Hill, C.N.; Komuro, Y.; Legg, S.; Le Sommer, J.; Masina, S.; Marsland, S.J.; Penny, S.G.; Qiao, F.; Ringler, T.D.; Treguier, A.M.; Tsujino, H.; Uotila, P.; Yeager, S.G.
Title Challenges and Prospects in Ocean Circulation Models Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages
Keywords Southern Ocean; Overturning Circulation: Regional sea level; submesoscale; ice shelves; turbulence
Abstract We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1011
Permanent link to this record
 

 
Author (up) Freeman, E.; Woodruff, S.D.; Worley, S.J.; Lubker, S.J.; Kent, E.C.; Angel, W.E.; Berry, D.I.; Brohan, P.; Eastman, R.; Gates, L.; Gloeden, W.; Ji, Z.; Lawrimore, J.; Rayner, N.A.; Rosenhagen, G.; Smith, S.R.
Title ICOADS Release 3.0: a major update to the historical marine climate record Type $loc['typeJournal Article']
Year 2017 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.
Volume 37 Issue 5 Pages 2211-2232
Keywords marine meteorological data; ship data; buoy data; sea-surface temperature; sea-level pressure; humidity; metadata; ocean
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0899-8418 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 20
Permanent link to this record
 

 
Author (up) Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Farrar, J.T.; Bourassa, M.; Minnett, P.J.; Seo, H.; Gille, S.T.; Zlotnicki, V.
Title FluxSat: Measuring the Ocean-Atmosphere Turbulent Exchange of Heat and Moisture from Space Type $loc['typeJournal Article']
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 11 Pages 1796
Keywords air-sea interactions; mesoscale; fluxes
Abstract Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean-atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air-sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean-atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean-atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1111
Permanent link to this record
 

 
Author (up) Glazer, R. H.
Title The Influence of Mesoscale Sea Surface Temperature Gradients on Tropical Cyclones Type $loc['typeManuscript']
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Air-Sea Interaction; Numerical Modeling; Sea Surface Temperature; Tropical Cyclones; Tropical Meteorology
Abstract
Address Department of Earth, Ocean, and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 161
Permanent link to this record
 

 
Author (up) Griffies, S.M.; Yin, J.; Durack, P.J.; Goddard, P.; Bates, S.C.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.W.; Bozec, A.; Chassignet, E.; Danabasoglu, G.; Danilov, S.; Domingues, C.M.; Drange, H.; Farneti, R.; Fernandez, E.; Greatbatch, R.J.; Holland, D.M.; Ilicak, M.; Large, W.G.; Lorbacher, K.; Lu, J.; Marsland, S.J.; Mishra, A.; George Nurser, A.J.; Salas y Mélia, D.; Palter, J.B.; Samuels, B.L.; Schröter, J.; Schwarzkopf, F.U.; Sidorenko, D.; Treguier, A.M.; Tseng, Y.-heng; Tsujino, H.; Uotila, P.; Valcke, S.; Voldoire, A.; Wang, Q.; Winton, M.; Zhang, X.
Title An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
Year 2014 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 78 Issue Pages 35-89
Keywords Sea level; CORE global ocean-ice simulations; Steric sea level; Global sea level; Ocean heat content
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 128
Permanent link to this record
 

 
Author (up) Groenen, D.
Title The Effects of Climate Change on the Pests and Diseases of Coffee Crops in Mesoamerica Type $loc['typeJournal Article']
Year 2018 Publication Journal of Climatology & Weather Forecasting Abbreviated Journal
Volume 6 Issue 3 Pages
Keywords Coffee; Pests and diseases; Mesoamerica; Climate
Abstract Coffee is an in-demand commodity that is being threatened by climate change. Increasing temperatures and rainfall variability are predicted in the region of Mexico and Central America (Mesoamerica). This region is plagued with pests and diseases that have already caused millions of dollars in damages and losses to the coffee industry.This paper examines three pests that negatively affect coffee plants: the coffee borer beetle, the black twig borer,and nematodes. In addition, this paper examines three diseases that can destroy coffee crops: bacterial blight,coffee berry disease, and coffee leaf rust. This paper will review the literature on how these pests and diseases are predicted to affect coffee crops under climate change models. In general, increased temperatures will increase the spread of pest and disease in coffee crops. Projected decreased rainfall in Honduras and Nicaragua may decrease the spread of pest and disease. However, these are complex issues which still require further study.
Address Climatol Weather Forecasting
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2332-2594 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 964
Permanent link to this record
 

 
Author (up) Harris, R.; Pollman, C.; Hutchinson, D.; Landing, W.; Axelrad, D.; Morey, S.L.; Dukhovskoy, D.; Vijayaraghavan, K.
Title A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico Type $loc['typeJournal Article']
Year 2012 Publication Environmental Research Abbreviated Journal Environ Res
Volume 119 Issue Pages 53-63
Keywords Animals; Calibration; Environmental Exposure; Fishes/metabolism; Humans; Mercury/*chemistry/metabolism; *Models, Theoretical; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism
Abstract A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.
Address Reed Harris Environmental Ltd., 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Funding PMID:23102631 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 234
Permanent link to this record
 

 
Author (up) Harris, R.; Pollman, C.; Landing, W.; Evans, D.; Axelrad, D.; Hutchinson, D.; Morey, S.L.; Rumbold, D.; Dukhovskoy, D.; Adams, D.H.; Vijayaraghavan, K.; Holmes, C.; Atkinson, R.D.; Myers, T.; Sunderland, E.
Title Mercury in the Gulf of Mexico: sources to receptors Type $loc['typeJournal Article']
Year 2012 Publication Environmental Research Abbreviated Journal Environ Res
Volume 119 Issue Pages 42-52
Keywords Air Pollutants/chemistry; Animals; Environmental Exposure; Food Chain; Geologic Sediments/chemistry; Humans; Mercury/*chemistry/metabolism; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism
Abstract Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web.
Address Reed Harris Environmental Ltd, 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Funding PMID:23098613 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 233
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)