|   | 
Details
   web
Records
Author Michael, J.-P.
Title On Initializing CGCMs for Seasonal Predictability of ENSO Type $loc['typeManuscript']
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords ENSO; Seasonal Forecasting
Abstract
Address Department of Earth, Ocean and Atmospheric Science
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 166
Permanent link to this record
 

 
Author Glazer, R. H.
Title The Influence of Mesoscale Sea Surface Temperature Gradients on Tropical Cyclones Type $loc['typeManuscript']
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Air-Sea Interaction; Numerical Modeling; Sea Surface Temperature; Tropical Cyclones; Tropical Meteorology
Abstract
Address Department of Earth, Ocean, and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 161
Permanent link to this record
 

 
Author McNaught, C.
Title The Increasing Intensity and Frequency of ENSO and its Impacts to the Southeast U.S. Type $loc['typeManuscript']
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords ENSO; El-Nino; climate; meteorology; southeast climate; weather; time series; sea-surface temperatures; La-Nina
Abstract
Address Department of Earth, Ocean and Atmospheric Science
Corporate Author Thesis $loc['Bachelor's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 165
Permanent link to this record
 

 
Author Baigorria, G.; Jones, J.; Shin, D.; Mishra, A.; Ingram, K. T., Jones, J. W., O'Brien, J. J., Roncoli, M. C., Fraisse, C., Breuer, N. E., Bartels, W.-L., Zierden, D. F., Letson, D.
Title Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs Type $loc['typeJournal Article']
Year 2007 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 34 Issue Pages 211-222
Keywords crop yield forecasts; regional circulation models; crop models; bias correction; seasonal climate forecasts
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 421
Permanent link to this record
 

 
Author Morey, S.; Wienders, N.; Dukhovskoy, D.; Bourassa, M.
Title Measurement Characteristics of Near-Surface Currents from Ultra-Thin Drifters, Drogued Drifters, and HF Radar Type $loc['typeJournal Article']
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 10 Pages 1633
Keywords surface drifters; surface currents; HF Radar; STOKES DRIFT; SEA-SURFACE; WAVES; BREAKING; VALIDATION; TRANSPORT
Abstract Concurrent measurements by satellite tracked drifters of different hull and drogue configurations and coastal high-frequency radar reveal substantial differences in estimates of the near-surface velocity. These measurements are important for understanding and predicting material transport on the ocean surface as well as the vertical structure of the near-surface currents. These near-surface current observations were obtained during a field experiment in the northern Gulf of Mexico intended to test a new ultra-thin drifter design. During the experiment, thirty small cylindrical drifters with 5 cm height, twenty-eight similar drifters with 10 cm hull height, and fourteen drifters with 91 cm tall drogues centered at 100 cm depth were deployed within the footprint of coastal High-Frequency (HF) radar. Comparison of collocated velocity measurements reveals systematic differences in surface velocity estimates obtained from the different measurement techniques, as well as provides information on properties of the drifter behavior and near-surface shear. Results show that the HF radar velocity estimates had magnitudes significantly lower than the 5 cm and 10 cm drifter velocity of approximately 45% and 35%, respectively. The HF radar velocity magnitudes were similar to the drogued drifter velocity. Analysis of wave directional spectra measurements reveals that surface Stokes drift accounts for much of the velocity difference between the drogued drifters and the thin surface drifters except during times of wave breaking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 985
Permanent link to this record
 

 
Author Harris, R.; Pollman, C.; Landing, W.; Evans, D.; Axelrad, D.; Hutchinson, D.; Morey, S.L.; Rumbold, D.; Dukhovskoy, D.; Adams, D.H.; Vijayaraghavan, K.; Holmes, C.; Atkinson, R.D.; Myers, T.; Sunderland, E.
Title Mercury in the Gulf of Mexico: sources to receptors Type $loc['typeJournal Article']
Year 2012 Publication Environmental Research Abbreviated Journal Environ Res
Volume 119 Issue Pages 42-52
Keywords Air Pollutants/chemistry; Animals; Environmental Exposure; Food Chain; Geologic Sediments/chemistry; Humans; Mercury/*chemistry/metabolism; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism
Abstract Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web.
Address Reed Harris Environmental Ltd, 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Funding PMID:23098613 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 233
Permanent link to this record
 

 
Author Harris, R.; Pollman, C.; Hutchinson, D.; Landing, W.; Axelrad, D.; Morey, S.L.; Dukhovskoy, D.; Vijayaraghavan, K.
Title A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico Type $loc['typeJournal Article']
Year 2012 Publication Environmental Research Abbreviated Journal Environ Res
Volume 119 Issue Pages 53-63
Keywords Animals; Calibration; Environmental Exposure; Fishes/metabolism; Humans; Mercury/*chemistry/metabolism; *Models, Theoretical; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism
Abstract A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.
Address Reed Harris Environmental Ltd., 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Funding PMID:23102631 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 234
Permanent link to this record
 

 
Author Conlon, K.C.; Kintziger, K.W.; Jagger, M.; Stefanova, L.; Uejio, C.K.; Konrad, C.
Title Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health Type $loc['typeJournal Article']
Year 2016 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health
Volume 13 Issue 8 Pages
Keywords *Climate Change/statistics & numerical data; Florida; Forecasting; Humans; Models, Theoretical; Public Health/*trends; United States; adaptation; attributable fraction; climate modeling; project disease burden; public health
Abstract There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.
Address Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220, USA. konrad@unc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1660-4601 ISBN Medium
Area Expedition Conference
Funding PMID:27517942; PMCID:PMC4997490 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 73
Permanent link to this record
 

 
Author Wentz, F.J.; Ricciardulli, L.; Rodriguez, E.; Stiles, B.W.; Bourassa, M.A.; Long, D.G.; Hoffman, R.N.; Stoffelen, A.; Verhoef, A.; O'Neill, L.W.; Farrar, J.T.; Vandemark, D.; Fore, A.G.; Hristova-Veleva, S.M.; Turk, F.J.; Gaston, R.; Tyler, D.
Title Evaluating and Extending the Ocean Wind Climate Data Record Type $loc['typeJournal Article']
Year 2017 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J Sel Top Appl Earth Obs Remote Sens
Volume 10 Issue 5 Pages 2165-2185
Keywords Radar cross section; remote sensing; satellite applications; sea surface; wind
Abstract Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 sigmao measurements include 1) direct Ku-band sigmao intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times.
Address Jet Propulsion Laboratory, Pasadena, CA 91109 USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-1404 ISBN Medium
Area Expedition Conference
Funding PMID:28824741; PMCID:PMC5562405 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 68
Permanent link to this record
 

 
Author Zavala-Hidalgo, J; Pares-Sierra, A; Ochoa, J
Title Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico Type $loc['typeJournal Article']
Year 2002 Publication Atmosfera Abbreviated Journal
Volume 15 Issue 2 Pages 81-104
Keywords Gulf of Mexico; heat fluxes; numerical model; sea surface temperature; seasonal variability
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 498
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)