Records |
Author  |
Bastola, S.; Misra, V. |
Title |
Seasonal hydrological and nutrient loading forecasts for watersheds over the Southeastern United States |
Type |
$loc['typeJournal Article'] |
Year |
2015 |
Publication |
Environmental Modelling & Software |
Abbreviated Journal |
Environmental Modelling & Software |
Volume |
73 |
Issue |
|
Pages |
90-102 |
Keywords |
Rainfall-runoff model; Seasonal hydrologic forecasting; Southeastern United States; Water quality; Seasonal predictability |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1364-8152 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
95 |
Permanent link to this record |
|
|
|
Author  |
Conlon, K.C.; Kintziger, K.W.; Jagger, M.; Stefanova, L.; Uejio, C.K.; Konrad, C. |
Title |
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health |
Type |
$loc['typeJournal Article'] |
Year |
2016 |
Publication |
International Journal of Environmental Research and Public Health |
Abbreviated Journal |
Int J Environ Res Public Health |
Volume |
13 |
Issue |
8 |
Pages |
|
Keywords |
*Climate Change/statistics & numerical data; Florida; Forecasting; Humans; Models, Theoretical; Public Health/*trends; United States; adaptation; attributable fraction; climate modeling; project disease burden; public health |
Abstract |
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida. |
Address |
Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220, USA. konrad@unc.edu |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1660-4601 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
PMID:27517942; PMCID:PMC4997490 |
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
73 |
Permanent link to this record |
|
|
|
Author  |
Culin, J. C. |
Title |
Wintertime ENSO Variability in Wind Direction Across the Southeast United States |
Type |
$loc['typeManuscript'] |
Year |
2006 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
Wind Roses, Southeast United States, Surface Wind Direction, ENSO, NCEP/NCAR Reanalysis |
Abstract |
Changes in wind direction in association with the phases of the El Niño-Southern Oscillation (ENSO) are identified over the Southeast region of the United States during the winter season (December-February). Wind roses, which depict the percentage of time the wind comes from each direction and can graphically identify the prevailing wind, are computed according to a 12-point compass for 24 stations in the region. Unfolding the wind rose into a 12-bin histogram visually demonstrates the peak frequencies in wind direction during each of the three (warm, cold and neutral) phases of ENSO. Normalized values represent the number of occurrences (counts) per month per ENSO phase, and comparison using percent changes illustrates the differences between phases. Based on similarities in wind direction characteristics, regional topography and results from a formal statistical test, stations are grouped into five geographic regions, with a representative station used to describe conditions in that region. Locations in South Florida show significant differences in the frequencies in wind direction from easterly directions during the cold phase and northerly directions during the warm phase. North Florida stations display cold phase southerly directions, and westerly and northerly directions during the warm phase, both of which are significant for much of the winter. Coastal Atlantic stations reveal winds from westerly directions for both phases. The Piedmont region demonstrates large variability in wind direction due to the influence from the Appalachian Mountains, but generally identifies warm phase and cold phase winds with more zonal influences rather than just from south or north. The Mountainous region also indicates southerly cold phase winds and northerly warm phase winds, but also reveals less of an influence from ENSO or significantly different distributions. Comparisons between observed patterns and those obtained using the NCEP/NCAR Reanalysis data reveal how the model-derived observations resolve the ENSO influence on surface wind direction at selected locations. Overall, resolution of the strength of the signals is not achieved, though the depiction of the general pattern is fair at two of the three locations. Connections between the synoptic flow and surface wind direction are examined via relationships to the storm track associated with the 250 hPa jet stream and sea level pressure patterns during each extreme ENSO phase. Discussion of reasons the NCEP reanalysis illustrates surface wind direction patterns different from those derived from observations is included. |
Address |
Department of Meteorology |
Corporate Author |
|
Thesis |
$loc['Master's thesis'] |
Publisher |
Florida State University |
Place of Publication |
Tallahassee, FL |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
615 |
Permanent link to this record |
|
|
|
Author  |
Karmel, T. |
Title |
Using multiple methodologies to explore variation in rainfall events in the southeastern United States |
Type |
$loc['typeManuscript'] |
Year |
2016 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
Climate; rainfall; variation; percentiles; southeast; united states; assessment |
Abstract |
|
Address |
Department of Earth, Ocean, and Atmospheric Sciences |
Corporate Author |
|
Thesis |
$loc['Bachelor's thesis'] |
Publisher |
Florida State University |
Place of Publication |
Tallahassee, FL |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
81 |
Permanent link to this record |
|
|
|
Author  |
Selman, C.; Misra, V. |
Title |
The impact of an extreme case of irrigation on the southeastern United States climate |
Type |
$loc['typeJournal Article'] |
Year |
2017 |
Publication |
Climate Dynamics |
Abbreviated Journal |
Clim Dyn |
Volume |
48 |
Issue |
3-4 |
Pages |
1309-1327 |
Keywords |
Regional climate modeling; Irrigation; Diurnal climatology; Diurnal; Southeast United States; Southeast US; Regional model; Agriculture; Anthropogenic influences; Anthropogenic; Climate; Climate change; Regional; Impact; Southeast; Model; Parametrization |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0930-7575 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
22 |
Permanent link to this record |
|
|
|
Author  |
Selman, C.; Misra, V.; Stefanova, L.; Dinapoli, S.; Smith III, T.J. |
Title |
On the twenty-first-century wet season projections over the Southeastern United States |
Type |
$loc['typeJournal Article'] |
Year |
2013 |
Publication |
Regional Environmental Change |
Abbreviated Journal |
Reg Environ Change |
Volume |
13 |
Issue |
S1 |
Pages |
153-164 |
Keywords |
Regional climate change; Southeast United States; Rainfall variability; Regional climate model; Global climate model; Precipitation variability |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1436-3798 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
192 |
Permanent link to this record |
|
|
|
Author  |
Zeng, H.; Chambers, J.Q.; Negron-Juarez, R.I.; Hurtt, G.C.; Baker, D.B.; Powell, M.D. |
Title |
Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000 |
Type |
$loc['typeJournal Article'] |
Year |
2009 |
Publication |
Proceedings of the National Academy of Sciences of the United States of America |
Abbreviated Journal |
Proc Natl Acad Sci U S A |
Volume |
106 |
Issue |
19 |
Pages |
7888-7892 |
Keywords |
Biodiversity; Biomass; Carbon; *Cyclonic Storms; Ecosystem; Greenhouse Effect; Models, Statistical; Southeastern United States; *Trees; United States |
Abstract |
Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance. |
Address |
Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Center, New Orleans, LA 70118, USA. hzeng@tulane.edu |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0027-8424 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
PMID:19416842; PMCID:PMC2683102 |
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
658 |
Permanent link to this record |