Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Domingues, R.; Kuwano-Yoshida, A.; Chardon-Maldonado, P.; Todd, R.E.; Halliwell, G.; Kim, H.-S.; Lin, I.-I.; Sato, K.; Narazaki, T.; Shay, L.K.; Miles, T.; Glenn, S.; Zhang, J.A.; Jayne, S.R.; Centurioni, L.; Le Hénaff, M.; Foltz, G.R.; Bringas, F.; Ali, M.M.; DiMarco, S.F.; Hosoda, S.; Fukuoka, T.; LaCour, B.; Mehra, A.; Sanabia, E.R.; Gyakum, J.R.; Dong, J.; Knaff, J.A.; Goni, G. url  doi
openurl 
  Title Ocean Observations in Support of Studies and Forecasts of Tropical and Extratropical Cyclones Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 446  
  Keywords  
  Abstract Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1043  
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Yashayaev, I.; Proshutinsky, A.; Bamber, J.L.; Bashmachnikov, I.L.; Chassignet, E.P.; Lee, C.M.; Tedstone, A.J. url  doi
openurl 
  Title Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 124 Issue 5 Pages 3333-3360  
  Keywords Greenland ice sheet melting; freshwater anomaly; subpolar North Atlantic; subpolar gyre; passive tracer numerical experiment; freshwater budget  
  Abstract The cumulative Greenland freshwater flux anomaly has exceeded 5000 km3 since the 1990s. The volume of this surplus fresh water is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveal freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50�100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of fresh water have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1029  
Permanent link to this record
 

 
Author Fender, C.K.; Kelly, T.B.; Guidi, L.; Ohman, M.D.; Smith, M.C.; Stukel, M.R. url  doi
openurl 
  Title Investigating Particle Size-Flux Relationships and the Biological Pump Across a Range of Plankton Ecosystem States From Coastal to Oligotrophic Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1074  
Permanent link to this record
 

 
Author Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; Griffies, S.M.; Hallberg, R.W.; Hanert, E.; Heimbach, P.; Hewitt, H.T.; Hill, C.N.; Komuro, Y.; Legg, S.; Le Sommer, J.; Masina, S.; Marsland, S.J.; Penny, S.G.; Qiao, F.; Ringler, T.D.; Treguier, A.M.; Tsujino, H.; Uotila, P.; Yeager, S.G. url  doi
openurl 
  Title Challenges and Prospects in Ocean Circulation Models Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords Southern Ocean; Overturning Circulation: Regional sea level; submesoscale; ice shelves; turbulence  
  Abstract We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1011  
Permanent link to this record
 

 
Author Freeman, E.; Kent, E.C.; Brohan, P.; Cram, T.; Gates, L.; Huang, B.; Liu, C.; Smith, S.R.; Worley, S.J.; Zhang, H.-M. url  doi
openurl 
  Title The International Comprehensive Ocean-Atmosphere Data Set – Meeting Users Needs and Future Priorities Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 435  
  Keywords  
  Abstract The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is a collection and archive of in situ marine observations, which has been developed over several decades as an international project and recently guided by formal international partnerships and the ICOADS Steering Committee. ICOADS contains observations from many different observing systems encompassing the evolution of measurement technology since the 18th century. ICOADS provides an integrated source of observations for a range of applications including research and climate monitoring, and forms the main marine in situ surface data source, e.g., near-surface ocean observations and lower atmospheric marine-meteorological observations from buoys, ships, coastal stations, and oceanographic sensors, for oceanic and atmospheric research and reanalysis. ICOADS has developed ways to incorporate user and reanalyses feedback information associated with permanent unique identifiers and is also the main repository for data that have been rescued from ships’ logbooks and other marine data digitization activities. ICOADS has been adopted widely because it provides convenient access to a range of observation types, globally, and through the entire marine instrumental record. ICOADS has provided a secure home for such observations for decades. Because of the increased volume of observations, particularly those available in near-real-time, and an expansion of their diversity, the ICOADS processing system now requires extensive modernization. Based on user feedback, we will outline the improvements that are required, the challenges to their implementation, and the benefits of upgrading this important and diverse marine archive and distribution activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1041  
Permanent link to this record
 

 
Author Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Farrar, J.T.; Bourassa, M.; Minnett, P.J.; Seo, H.; Gille, S.T.; Zlotnicki, V. url  doi
openurl 
  Title FluxSat: Measuring the Ocean-Atmosphere Turbulent Exchange of Heat and Moisture from Space Type $loc['typeJournal Article']
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 11 Pages 1796  
  Keywords air-sea interactions; mesoscale; fluxes  
  Abstract Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean-atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air-sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean-atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean-atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1111  
Permanent link to this record
 

 
Author Groenen, Danielle Elizabeth openurl 
  Title Diagnosing the Atmospheric Phenomena Associated with the Onset and Demise of the Rainy Season in Mesoamerica Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Mexico and Central America (Mesoamerica) are situated in a complex and unique geographical position with the Caribbean Sea to the East and the tropical Eastern Pacific Ocean to the West. The weather patterns of this region are driven by winds, temperatures, moisture, and orography of several mountain ranges. This study finds the dates of the onset and demise of rainfall regimes on a specific day using NASA’s Tropical Rainfall Measuring Mission (TRMM) rainfall for years 1998–2012, area-averaged over land. Using NASA’s MERRA-2 Reanalysis data, we also look at the phenomenology of the triggers of the rainy season onset and demise on the daily time-scale instead of the monthly scales used by previous studies.

We find that the Mesoamerican Rainy Season can be distinguished into two parts: the Early Spring Rainfall (ESR) associated with light rains and the Late Spring Rainfall (LSR) associated with heavy rains. Two algorithms are used to obtain these rainy season distinctions. A new algorithm was developed during this study, called the SLOPE algorithm, to calculate when the rain rates first start to increase. In the second method, the daily cumulative anomalies of rainfall are compared to the climatological rainfall to find the time of onset of the heavy rains, called the MINCA algorithm. To better understand the phenomenology associated with the timing of the rainfall, we look at the monsoon trough, moisture flux convergence, moist static energy anomalies, and the weakening/strengthening of the winds associated with the Caribbean Low-Level Jet and Panama Jet.

The light rain rates begin, on average, in mid-March, approximately one month after the peak of the winter Caribbean Low-Level Jet and the Panama Jet. The ramp-up between the light rains and heavy rains is associated with a significant weakening of both jets and the northward progression of a monsoon trough off the western coast of Central America. The heavy rain rates begin, on average, in mid-May, and are associated with the timing when the Panama Jet goes to near zero magnitude and a strong monsoon trough in the eastern Pacific. At the demise of the rainfall, approximately in mid-November, the Panama Jet strengthens again, the total moisture flux convergence decreases significantly, and the monsoon trough retreats southward and eastward. The results of this study have positive implications in agriculture and water resources for Mesoamerica, as this information may help resource managers better plan and adapt to climate variability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1085  
Permanent link to this record
 

 
Author Guerra, L.A.A.; Paiva, A.M.; Chassignet, E.P. url  doi
openurl 
  Title On the translation of Agulhas rings to the western South Atlantic Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 139 Issue Pages 104-113  
  Keywords  
  Abstract The shedding of Agulhas rings is the primary process connecting the Indian and Atlantic oceans. The rings transport warm and salty waters that feed the surface limb of the Atlantic Meridional Overturning Circulation. Early studies suggest that Agulhas rings decay and diffuse their contents within the South Atlantic subtropical gyre. In this paper, we update the ring census using an automated algorithm to detect and track eddies over more than 23 years of satellite altimetry data (1993-2016) and calculate their main characteristics. While 140 rings spawned from the Agulhas Retroflection, their following splitting and merging resulted in 74 long-lived rings that crossed the Walvis Ridge and translated towards the west. Eventually, three rings reached the western boundary. For one of them, we use in situ measurements to document its interaction with the Brazil Current and two cyclonic eddies, which resulted in a current velocity increase by three times. Although already hypothesized, this interaction had not been demonstrated with in situ evidence until now.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 994  
Permanent link to this record
 

 
Author Holbach, H.M.; Uhlhorn, E.W.; Bourassa, M.A. url  doi
openurl 
  Title Off-Nadir SFMR Brightness Temperature Measurements in High-Wind Conditions Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Atmospheric and Oceanic Technology Abbreviated Journal J. Atmos. Oceanic Technol.  
  Volume 35 Issue 9 Pages 1865-1879  
  Keywords Tropical cyclones; Wind; Air-sea interaction; Microwave observations; Remote sensing; Surface observations  
  Abstract Wind and wave-breaking directions are investigated as potential sources of an asymmetry identified in off-nadir remotely sensed measurements of ocean surface brightness temperatures obtained by the Stepped Frequency Microwave Radiometer (SFMR) in high-wind conditions, including in tropical cyclones. Surface wind speed, which dynamically couples the atmosphere and ocean, can be inferred from SFMR ocean surface brightness temperature measurements using a radiative transfer model and an inversion algorithm. The accuracy of the ocean surface brightness temperature to wind speed calibration relies on accurate knowledge of the surface variables that are influencing the ocean surface brightness temperature. Previous studies have identified wind direction signals in horizontally polarized radiometer measurements in low to moderate (0�20 m s−1) wind conditions over a wide range of incidence angles. This study finds that the azimuthal asymmetry in the off-nadir SFMR brightness temperature measurements is also likely a function of wind direction and extends the results of these previous studies to high-wind conditions. The off-nadir measurements from the SFMR provide critical data for improving the understanding of the relationships between brightness temperature, surface wave�breaking direction, and surface wind vectors at various incidence angles, which is extremely useful for the development of geophysical model functions for instruments like the Hurricane Imaging Radiometer (HIRAD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0739-0572 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 980  
Permanent link to this record
 

 
Author Hu, X.; Cai, M.; Yang, S.; Wu, Z. url  doi
openurl 
  Title Delineation of thermodynamic and dynamic responses to sea surface temperature forcing associated with El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 51 Issue 11-12 Pages 4329-4344  
  Keywords El Niño; SST anomalies; Thermodynamic and dynamic responses; Gill-type response  
  Abstract A new framework is proposed to gain a better understanding of the response of the atmosphere over the tropical Pacific to the radiative heating anomaly associated with the sea surface temperature (SST) anomaly in canonical El Niño winters. The new framework is based on the equilibrium balance between thermal radiative cooling anomalies associated with air temperature response to SST anomalies and other thermodynamic and dynamic processes. The air temperature anomalies in the lower troposphere are mainly in response to radiative heating anomalies associated with SST, atmospheric water vapor, and cloud anomalies that all exhibit similar spatial patterns. As a result, air temperature induced thermal radiative cooling anomalies would balance out most of the radiative heating anomalies in the lower troposphere. The remaining part of the radiative heating anomalies is then taken away by an enhancement (a reduction) of upward energy transport in the central-eastern (western) Pacific basin, a secondary contribution to the air temperature anomalies in the lower troposphere. Above the middle troposphere, radiative effect due to water vapor feedback is weak. Thermal radiative cooling anomalies are mainly in balance with the sum of latent heating anomalies, vertical and horizontal energy transport anomalies associated with atmospheric dynamic response and the radiative heating anomalies due to changes in cloud. The pattern of Gill-type response is attributed mainly to the non-radiative heating anomalies associated with convective and large-scale energy transport. The radiative heating anomalies associated with the anomalies of high clouds also contribute positively to the Gill-type response. This sheds some light on why the Gill-type atmospheric response can be easily identifiable in the upper atmosphere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 997  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)