Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carstens, J url  openurl
  Title Tropical Cyclogenesis from Self-aggregated Convection in Numerical Simulations of Rotating Radiative-convective Equilibrium Type $loc['typeManuscript']
  Year 2019 Publication Dissertations & Theses Abbreviated Journal Dissertations & Theses  
  Volume Issue Pages  
  Keywords  
  Abstract Organized convection is of critical importance in the tropical atmosphere. Recent advances in numerical modeling have revealed that moist convection can interact with its environment to transition from a quasi-random to organized state. This phenomenon, known as convective self-aggregation,is aided by feedbacks involving clouds, water vapor, and radiation that increase the spatial variance of column-integrated frozen moist static energy. Prior studies have shown self-aggregation to takeseveral different forms, including that of spontaneous tropical cyclogenesis in an environment of rotating radiative-convective equilibrium (RCE). This study expands upon previous work to address the processes leading to tropical cyclogenesis in this rotating RCE framework. More specifically,a three-dimensional, cloud-resolving numerical model is used to examine the self-aggregation of convection and potential cyclogenesis, and the background planetary vorticity is varied on an f-plane across simulations to represent a range of deep tropical and near-equatorial environments.Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic-scale forcing.All simulations with planetary vorticity corresponding to latitudes from 10°to 20°generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five-member ensemble of 20°simulations, reflecting a potential degree of stochastic variability based in part on the initial random distribution of convection. Shared across this so-called “high-f” group is the emergence of a midlevel vortex in the days leading to genesis,which has dynamic and thermodynamic implications on its environment that facilitate the spinup of a low-level vortex. Tropical cyclogenesis is possible in this model even at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self-aggregates into a quasi-circular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by near-surface inflow and shallow overturning radial circulations aloft within the aggregated cluster. Other experiments at these lower Coriolis parameters instead self-aggregate into an elongated band and fail to undergo cyclogenesis over the 100-day simulation. A large portion of this study is devoted to examining in greater detail the dynamic and thermodynamic evolution of cyclogenesis in these experiments and comparing the physical mechanisms to current theories.  
  Address  
  Corporate Author Thesis  
  Publisher Florida State University - FCLA; ProQuest Dissertations & Theses Global Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1054  
Permanent link to this record
 

 
Author Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.W.; Farrar, J.T.; Gille, S.T.; Gulev, S.; Josey, S.A.; Kato, S.; Katsumata, M.; Kent, E.; Krug, M.; Minnett, P.J.; Parfitt, R.; Pinker, R.T.; Stackhouse Jr., P.W.; Swart, S.; Tomita, H.; Vandemark, D.; Weller, A.R.; Yoneyama, K.; Yu, L.; Zhang, D. url  doi
openurl 
  Title Air-Sea Fluxes With a Focus on Heat and Momentum Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1067  
Permanent link to this record
 

 
Author Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. doi  openurl
  Title Data concerning statistical relation between obliquity and Dansgaard-Oeschger events Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal Data Brief  
  Volume 23 Issue Pages  
  Keywords Dansgaard-Oeschger events; Obliquity; Surrogate data; Time-varying Shannon entropy  
  Abstract Data presented are related to the research article entitled “Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity” (J. Deng et al., 2018). The datasets in Deng et al. (2018) are analyzed on the foundation of ensemble empirical mode decomposition (EEMD) (Z.H. Wu and N.E. Huang, 2009), and reveal more occurrences of Dansgaard-Oeschger (DO) events in the decreasing phase of obliquity. Here, we report the number of significant high Shannon entropy (SE) (C.E. Shannon and W. Weaver, 1949) of 95% significance level of DO events in the increasing and decreasing phases of obliquity, respectively. First, the proxy time series are filtered by EEMD to obtain DO events. Then, the time-varying SE of DO modes are calculated on the basis of principle of histogram. The 95% significance level is evaluated through surrogate data (T. Schreiber and A. Schmitz, 1996). Finally, a comparison between the numbers of SE values that are larger than 95% significance level in the increasing and decreasing phases of obliquity, respectively, is reported.  
  Address Key Laboratory of Marine Sciences and Numerical Modelling, Ministry of Natural Resources, Qingdao 266061, PR China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-3409 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('1372394'); strtoupper('P').strtolower('MC6660458') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1068  
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Yashayaev, I.; Proshutinsky, A.; Bamber, J.L.; Bashmachnikov, I.L.; Chassignet, E.P.; Lee, C.M.; Tedstone, A.J. url  doi
openurl 
  Title Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 124 Issue 5 Pages 3333-3360  
  Keywords Greenland ice sheet melting; freshwater anomaly; subpolar North Atlantic; subpolar gyre; passive tracer numerical experiment; freshwater budget  
  Abstract The cumulative Greenland freshwater flux anomaly has exceeded 5000 km3 since the 1990s. The volume of this surplus fresh water is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveal freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50�100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of fresh water have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1029  
Permanent link to this record
 

 
Author Huang, T.; Armstrong, E.M.; Bourassa, M.A.; Cram, T.A.; Elya, J.; Greguska, F.; Jacob, J.C.; Ji, Z.; Jiang, Y.; Li, Y.; Quach, N.T.; McGibbney, L.J.; Smith, S.R.; Wilson, B.D.; Worley S.J.; Yang, C. url  doi
openurl 
  Title An Integrated Data Analytics Platform Type $loc['typeJournal Article']
  Year 2019 Publication Marine Science Abbreviated Journal Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords big data, Cloud computing, Ocean science, data analysis, Matchup, anomaly detection, open source  
  Abstract An Integrated Science Data Analytics Platform is an environment that enables the confluence of resources for scientific investigation. It harmonizes data, tools and computational resources to enable the research community to focus on the investigation rather than spending time on security, data preparation, management, etc. OceanWorks is a NASA technology integration project to establish a cloud-based Integrated Ocean Science Data Analytics Platform for big ocean science at NASA�s Physical Oceanography Distributed Active Archive Center (PO.DAAC) for big ocean science. It focuses on advancement and maturity by bringing together several NASA open-source, big data projects for parallel analytics, anomaly detection, in situ to satellite data matchup, quality-screened data subsetting, search relevancy, and data discovery.

Our communities are relying on data available through distributed data centers to conduct their research. In typical investigations, scientists would (1) search for data, (2) evaluate the relevance of that data, (3) download it, and (4) then apply algorithms to identify trends, anomalies, or other attributes of the data. Such a workflow cannot scale if the research involves a massive amount of data or multi-variate measurements. With the upcoming NASA Surface Water and Ocean Topography (SWOT) mission expected to produce over 20PB of observational data during its 3-year nominal mission, the volume of data will challenge all existing Earth Science data archival, distribution and analysis paradigms. This paper discusses how OceanWorks enhances the analysis of physical ocean data where the computation is done on an elastic cloud platform next to the archive to deliver fast, web-accessible services for working with oceanographic measurements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1038  
Permanent link to this record
 

 
Author Kent, E.C.; Rayner, N.A.; Berry, D.I.; Eastman, R.; Grigorieva, V.G.; Huang, B.; Kennedy, J.J.; Smith, S.R.; Willett, K.M. url  doi
openurl 
  Title Observing Requirements for Long-Term Climate Records at the Ocean Surface Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 441  
  Keywords  
  Abstract Observations of conditions at the ocean surface have been made for centuries, contributing to some of the longest instrumental records of climate change. Most prominent is the climate data record (CDR) of sea surface temperature (SST), which is itself essential to the majority of activities in climate science and climate service provision. A much wider range of surface marine observations is available however, providing a rich source of data on past climate. We present a general error model describing the characteristics of observations used for the construction of climate records, illustrating the importance of multi-variate records with rich metadata for reducing uncertainty in CDRs. We describe the data and metadata requirements for the construction of stable, multi-century marine CDRs for variables important for describing the changing climate: SST, mean sea level pressure, air temperature, humidity, winds, clouds, and waves. Available sources of surface marine data are reviewed in the context of the error model. We outline the need for a range of complementary observations, including very high quality observations at a limited number of locations and also observations that sample more broadly but with greater uncertainty. We describe how high-resolution modern records, particularly those of high-quality, can help to improve the quality of observations throughout the historical record. We recommend the extension of internationally-coordinated data management and curation to observation types that do not have a primary focus of the construction of climate records. Also recommended is reprocessing the existing surface marine climate archive to improve and quantify data and metadata quality and homogeneity. We also recommend the expansion of observations from research vessels and high quality moorings, routine observations from ships and from data and metadata rescue. Other priorities include: field evaluation of sensors; resources for the process of establishing user requirements and determining whether requirements are being met; and research to estimate uncertainty, quantify biases and to improve methods of construction of CDRs. The requirements developed in this paper encompass specific actions involving a variety of stakeholders, including funding agencies, scientists, data managers, observing network operators, satellite agencies, and international co-ordination bodies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1040  
Permanent link to this record
 

 
Author Liu, Y.; Tan, Z.-M.; Wu, Z. url  doi
openurl 
  Title Noninstantaneous Wave-CISK for the Interaction between Convective Heating and Low-Level Moisture Convergence in the Tropics Type $loc['typeJournal Article']
  Year 2019 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.  
  Volume 76 Issue 7 Pages 2083-2101  
  Keywords Convection; Diabatic heating; Moisture; moisture budget  
  Abstract The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture-convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation-consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4928 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1065  
Permanent link to this record
 

 
Author Rodríguez, E.; Bourassa, M.; Chelton, D.; Farrar, J.T.; Long, D.; Perkovic-Martin, D.; Samelson, R. url  doi
openurl 
  Title The Winds and Currents Mission Concept Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract The Winds and Currents Mission (WaCM) is a proposed approach to meet the need identified by the NRC Decadal Survey for the simultaneous measurements of ocean vector winds and currents. WaCM features a Ka-band pencil-beam Doppler scatterometer able to map ocean winds and currents globally. We review the principles behind the WaCM measurement and the requirements driving the mission. We then present an overview of the WaCM observatory and tie its capabilities to other OceanObs reviews and measurement approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1063  
Permanent link to this record
 

 
Author Stukel, M.R.; Kelly, T.B. url  doi
openurl 
  Title The carbon: (234) Thorium ratios of sinking particles in the California current ecosystem 2: Examination of a thorium sorption, desorption, and particle transport model Type $loc['typeJournal Article']
  Year 2019 Publication Marine Chemistry Abbreviated Journal Marine Chemistry  
  Volume 212 Issue Pages 1-15  
  Keywords POC concentration; sinking particles.; depth and relationship with water; phytoplankton  
  Abstract Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon: thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4203 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1002  
Permanent link to this record
 

 
Author Stukel, M.R.; Ohman, M.D.; Kelly, T.B.; Biard, T. url  doi
openurl 
  Title The Roles of Suspension-Feeding and Flux-Feeding Zooplankton as Gatekeepers of Particle Flux Into the Mesopelagic Ocean in the Northeast Pacific Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords biological pump; carbon export; remineralization length scale; mesozooplankton ecology; pteropods; marine biogeochemistry; sinking particles; marine snow  
  Abstract Zooplankton are important consumers of sinking particles in the ocean's twilight zone. However, the impact of different taxa depends on their feeding mode. In contrast to typical suspension-feeding zooplankton, flux-feeding taxa preferentially consume rapidly sinking particles that would otherwise penetrate into the deep ocean. To quantify the potential impact of two flux-feeding zooplankton taxa [Aulosphaeridae (Rhizaria), and Limacina helicina (euthecosome pteropod)] and the total suspension-feeding zooplankton community, we measured depth-stratified abundances of these organisms during six cruises in the California Current Ecosystem. Using allometric-scaling relationships, we computed the percentage of carbon flux intercepted by flux feeders and suspension feeders. These estimates were compared to direct measurements of carbon flux attenuation (CFA) made using drifting sediment traps and U-238-Th-234 disequilibrium. We found that CFA in the shallow twilight zone typically ranged from 500 to 1000 m mol organic C flux remineralized per 10-m vertical depth bin. This equated to approximately 6-10% of carbon flux remineralized/10 m. The two flux-feeding taxa considered in this study could account for a substantial proportion of this flux near the base of the euphotic zone. The mean flux attenuation attributable to Aulosphaeridae was 0.69%/10 m (median = 0.21%/10 m, interquartile range = 0.04-0.81%) at their depth of maximum abundance (similar to 100 m), which would equate to similar to 10% of total flux attenuation in this depth range. The maximum flux attenuation attributable to Aulosphaeridae reached 4.2%/10 m when these protists were most abundant. L. helicina, meanwhile, could intercept 0.45-1.6% of carbon flux/10 m, which was slightly greater (on average) than the Aulosphaeridae. In contrast, suspension-feeding zooplankton in the mesopelagic (including copepods, euphausiids, appendicularians, and ostracods) had combined clearance rates of 2-81 L m(-3) day(-1) (mean of 19.6 L m(-3) day(-1)). This implies a substantial impact on slowly sinking particles, but a negligible impact on the presumably rapidly sinking fecal pellets that comprised the majority of the material collected in sediment traps. Our results highlight the need for a greater research focus on the many taxa that potentially act as flux feeders in the oceanic twilight zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1066  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2019 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)