Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Bhowmick, S. A.; Agarwal, N.; Ali, M. M.; Kishtawal, C. M.; Sharma, R. url  doi
openurl 
  Title Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Nina events Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal  
  Volume 52 Issue 12 Pages 7225-7234  
  Keywords La-Niña; Bay of Bengal; Tropical cyclones; Ocean heat content  
  Abstract This study aims to analyze the role of ocean heat content in boosting the post-monsoon cyclonic activities over Bay of Bengal during La-Niña events. In strong La-Niña years, accumulated cyclone energy in Bay of Bengal is much more as compared to any other year. It is observed that during late June to October of moderate to strong La-Nina years, western Pacific is warmer. Sea surface temperature anomaly of western Pacific Ocean clearly indicates the presence of relatively warmer water mass in the channel connecting the Indian Ocean and Pacific Ocean, situated above Australia. Ocean currents transport the heat zonally from Pacific to South eastern Indian Ocean. Excess heat of the southern Indian Ocean is eventually transported to eastern equatorial Indian Ocean through strong geostrophic component of ocean current. By September the northward transport of this excess heat from eastern equatorial Indian Ocean to Bay of Bengal takes place during La-Nina years boosting the cyclonic activities thereafter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 71  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A.; Mishra, A. url  doi
openurl 
  Title Local onset and demise of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume 51 Issue 5-6 Pages 1609-1622  
  Keywords Indian monsoon; ENSO; Onset of monsoon  
  Abstract This paper introduces an objective definition of local onset and demise of the Indian summer monsoon (ISM) at the native grid of the Indian Meteorological Department's rainfall analysis based on more than 100 years of rain gauge observations. The variability of the local onset/demise of the ISM is shown to be closely associated with the All India averaged rainfall onset/demise. This association is consistent with the corresponding evolution of the slow large-scale reversals of upper air and ocean variables that raise the hope of predictability of local onset and demise of the ISM. The local onset/demise of the ISM also show robust internannual variations associated with El Nino and the Southern Oscillation and Indian Ocean dipole mode. It is also shown that the early monsoon rains over northeast India has a predictive potential for the following seasonal anomalies of rainfall and seasonal length of the monsoon over rest of India.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 360  
Permanent link to this record
 

 
Author Misra, V; Bhardwaj, A; Mishra, A url  doi
openurl 
  Title Characterizing the rainy season of Peninsular Florida Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume 51 Issue 5-6 Pages 2157-2167  
  Keywords  
  Abstract Peninsular Florida (PF) has a very distinct wet season that can be objectively defined with onset and demise dates based on daily rainfall. The dramatic onset of rains and its retreat coincides with the seasonal cycle of the regional scale atmospheric and upper ocean circulations and upper ocean heat content of the immediate surrounding ocean. The gradual warming of the Intra-Americas Seas (IAS; includes Gulf of Mexico, Caribbean Sea and parts of northwestern subtropical Atlantic Ocean) with the seasonal evolution of the Loop Current and increased atmospheric heat flux in to the ocean eventually enhance the moisture flux into terrestrial PF around the time of the onset of the Rainy Season of PF (RSPF). Similarly, the RSPF retreats with the cooling of the IAS that coincides with the weakening of the Loop Current and reduction of the upper ocean heat content of the IAS. It is also shown that anomalous onset and demise dates of the RSPF have implications on its seasonal rainfall anomalies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 556  
Permanent link to this record
 

 
Author Glazer, R. H.; Misra, V. url  doi
openurl 
  Title Ice versus liquid water saturation in simulations of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume Issue Pages  
  Keywords Indian monsoon; Regional modeling; Saturation vapor pressure; Cloud microphysics scheme  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 943  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)