|   | 
Details
   web
Records
Author Griffies, S.M.; Yin, J.; Durack, P.J.; Goddard, P.; Bates, S.C.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.W.; Bozec, A.; Chassignet, E.; Danabasoglu, G.; Danilov, S.; Domingues, C.M.; Drange, H.; Farneti, R.; Fernandez, E.; Greatbatch, R.J.; Holland, D.M.; Ilicak, M.; Large, W.G.; Lorbacher, K.; Lu, J.; Marsland, S.J.; Mishra, A.; George Nurser, A.J.; Salas y Mélia, D.; Palter, J.B.; Samuels, B.L.; Schröter, J.; Schwarzkopf, F.U.; Sidorenko, D.; Treguier, A.M.; Tseng, Y.-heng; Tsujino, H.; Uotila, P.; Valcke, S.; Voldoire, A.; Wang, Q.; Winton, M.; Zhang, X.
Title An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
Year 2014 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 78 Issue Pages 35-89
Keywords Sea level; CORE global ocean-ice simulations; Steric sea level; Global sea level; Ocean heat content
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 128
Permanent link to this record
 

 
Author Hiester, H.R.; Piggott, M.D.; Farrell, P.E.; Allison, P.A.
Title Assessment of spurious mixing in adaptive mesh simulations of the two-dimensional lock-exchange Type $loc['typeJournal Article']
Year 2014 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 73 Issue Pages 30-44
Keywords Lock-exchange; Diapycnal mixing; Adaptive mesh; Finite-element methods
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 129
Permanent link to this record
 

 
Author Ilicak, M.; Drange, H.; Wang, Q.; Gerdes, R.; Aksenov, Y.; Bailey, D.; Bentsen, M.; Biastoch, A.; Bozec, A.; Böning, C.; Cassou, C.; Chassignet, E.; Coward, A.C.; Curry, B.; Danabasoglu, G.; Danilov, S.; Fernandez, E.; Fogli, P.G.; Fujii, Y.; Griffies, S.M.; Iovino, D.; Jahn, A.; Jung, T.; Large, W.G.; Lee, C.; Lique, C.; Lu, J.; Masina, S.; George Nurser, A.J.; Roth, C.; Salas y Mélia, D.; Samuels, B.L.; Spence, P.; Tsujino, H.; Valcke, S.; Voldoire, A.; Wang, X.; Yeager, S.G.
Title An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes Type $loc['typeJournal Article']
Year 2016 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 100 Issue Pages 141-161
Keywords Arctic Ocean; Atlantic Water; St. Anna Trough; Density currents; CORE-II atmospheric forcing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 80
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1035
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 98-113
Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas
Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1034
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 98-113
Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas
Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1036
Permanent link to this record
 

 
Author Magaldi, M.G.; Özgökmen, T.M.; Griffa, A.; Chassignet, E.P.; Iskandarani, M.; Peters, H.
Title Turbulent flow regimes behind a coastal cape in a stratified and rotating environment Type $loc['typeJournal Article']
Year 2008 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 25 Issue 1-2 Pages 65-82
Keywords Cape; Headland; Eddy generation; Modeling; Form drag; Mixing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 417
Permanent link to this record
 

 
Author Morey, S.L.; Dukhovskoy, D.S.
Title A downscaling method for simulating deep current interactions with topography – Application to the Sigsbee Escarpment Type $loc['typeJournal Article']
Year 2013 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 69 Issue Pages 50-63
Keywords Ocean modeling; Model nesting; Topographic flows; USA; Gulf of Mexico; Sigsbee Escarpment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding DeepStar, HYCOM Consortium Approved $loc['no']
Call Number COAPS @ mfield @ Serial 183
Permanent link to this record
 

 
Author Rahaman, H.; Srinivasu, U.; Panickal, S.; Durgadoo, J.V.; Griffies, S.M.; Ravichandran, M.; Bozec, A.; Cherchi, A.; Voldoire, A.; Sidorenko, D..; Chassignet, E.P.; Danabasoglu, G.; Tsujino, H.; Getzlaff, K.; Ilicak, M.; Bentsen, M.; Long, M.C.; Fogli, P.G.; Farneti, R.; Danilov, S.; Marsland, S.J.; Valcke, S.; Yeager, S.G.; Wang, Q.
Title An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
Year 2020 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 145 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1087
Permanent link to this record
 

 
Author Rousset, C.; Houssais, M.-N.; Chassignet, E.P.
Title A multi-model study of the restratification phase in an idealized convection basin Type $loc['typeJournal Article']
Year 2009 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 26 Issue 3-4 Pages 115-133
Keywords Baroclinic instability; Convection basin; Model intercomparison; Restratification; Eddies; Idealized simulations
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 402
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)