|   | 
Details
   web
Records
Author Wang, S.; Kranz, S.A.; Kelly, T.B.; Song, H.; Stukel, M.R.; Cassar, N.
Title Lagrangian Studies of Net Community Production: The Effect of Diel and Multiday Nonsteady State Factors and Vertical Fluxes on O2/Ar in a Dynamic Upwelling Region Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.
Volume 125 Issue 6 Pages e2019JG005569
Keywords net community production; O2/Ar; California Current Ecosystem; Lagrangian measurements; vertical fluxes; nonsteady state
Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a �worst‐case� field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8953 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1114
Permanent link to this record
 

 
Author Powell, M.
Title ), Observing and Analyzing the Near-Surface Wind Field in Tropical Cyclones Type $loc['typeBook Chapter']
Year 2010 Publication Global Perspectives on Tropical Cyclones: From Science to Mitigation Abbreviated Journal
Volume Issue Pages 177-199
Keywords
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Editor Chan, JCL; Kepert, JD
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 376
Permanent link to this record
 

 
Author Cocke, S.; Boisserie, M.; Shin, D.-W.
Title A coupled soil moisture initialization scheme for the FSU/COAPS climate model Type $loc['typeJournal Article']
Year 2013 Publication Inverse Problems in Science and Engineering Abbreviated Journal Inverse Problems in Science and Engineering
Volume 21 Issue 3 Pages 420-437
Keywords soil moisture initialization; data assimilation; precipitation assimilation; nudging; reanalysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1741-5977 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 199
Permanent link to this record
 

 
Author Krishnamurti, T.N.; Kishtawal, C.; LaRow, T. E.; Bachiochi, D.; Zhang, Z.; Williford, C.; Gadgil, S.; Surendran, S.
Title Improved Skill for Weather and Seasonal Climate Forecasts from Multi-Model Super Ensemble Type $loc['typeJournal Article']
Year 1999 Publication Science Abbreviated Journal
Volume 285 Issue 5433 Pages 1548-1550
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 781
Permanent link to this record
 

 
Author Cammarano, D.; Basso, B.; Stefanova, L.; Grace, P.
Title Adapting wheat sowing dates to projected climate change in the Australian subtropics: analysis of crop water use and yield Type $loc['typeJournal Article']
Year 2012 Publication Crop and Pasture Science Abbreviated Journal Crop Pasture Sci.
Volume 63 Issue 10 Pages 974
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1836-0947 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 257
Permanent link to this record
 

 
Author González-Rodríguez, E.; Trasviña-Castro, A.; Gaxiola-Castro, G.; Zamudio, L.; Cervantes-Duarte, R.
Title Net primary productivity, upwelling and coastal currents in the Gulf of Ulloa, Baja California, México Type $loc['typeJournal Article']
Year 2012 Publication Ocean Science Abbreviated Journal Ocean Sci.
Volume 8 Issue 4 Pages 703-711
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1812-0792 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 258
Permanent link to this record
 

 
Author Shin, D. W., G. A. Baigorria, Y.-K. Lim, S. Cocke, T. E. LaRow, J. J. O'Brien, and J. W. Jones
Title Assessing Crop Yield Simulations with Various Seasonal Climate Data Type $loc['typeMagazine Article']
Year 2009 Publication Science and Technology Infusion Climate Bulletin Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 662
Permanent link to this record
 

 
Author Coles, V.J.; Stukel, M.R.; Brooks, M.T.; Burd, A.; Crump, B.C.; Moran, M.A.; Paul, J.H.; Satinsky, B.M.; Yager, P.L.; Zielinski, B.L.; Hood, R.R.
Title Ocean biogeochemistry modeled with emergent trait-based genomics Type $loc['typeJournal Article']
Year 2017 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 358 Issue 6367 Pages 1149-1154
Keywords
Abstract
Address Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Post Office Box 775, Cambridge, MD 21613, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Funding PMID:29191900 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 552
Permanent link to this record
 

 
Author Zhang, M.; Zhang, Y.; Shu, Q.; Zhao, C.; Wang, G.; Wu, Z.; Qiao, F.
Title Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean Type $loc['typeJournal Article']
Year 2018 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 612 Issue Pages 1141-1148
Keywords Chlorophyll a; Dipole pattern; Multidimensional ensemble empirical mode decomposition; Propagation; Spatiotemporal evolution; The variable trend
Abstract Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability. Here, the spatiotemporal evolution of the chla trend in the North Atlantic Ocean for the period 1997-2016 is analyzed using the multidimensional ensemble empirical mode decomposition method. We find that this variable trend signal of chla shows a dipole pattern between the subpolar gyre and along the Gulf Stream path, and propagation along the opposite direction of the North Atlantic Current. This propagation signal has an overlapping variability of approximately twenty years. Our findings suggest that the spatiotemporal evolution of chla during the two most recent decades is part of the multidecadal variations and possibly regulated by the changes of Atlantic Meridional Overturning Circulation, whereas the mechanisms of such evolution patterns still need to be explored.
Address First Institute of Oceanography, State Oceanic Administration, Qingdao, China; Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Data Analysis and Applications, State Oceanic Administration, Qingdao, China. Electronic address: qiaofl@fio.org.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Funding PMID:28892858 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 363
Permanent link to this record
 

 
Author Stukel, M.R.; Aluwihare, L.I.; Barbeau, K.A.; Chekalyuk, A.M.; Goericke, R.; Miller, A.J.; Ohman, M.D.; Ruacho, A.; Song, H.; Stephens, B.M.; Landry, M.R.
Title Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction Type $loc['typeJournal Article']
Year 2017 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 114 Issue 6 Pages 1252-1257
Keywords biological carbon pump; carbon cycle; particle flux; particulate organic carbon; plankton
Abstract Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg Cm-2d-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional approximately 225 mg Cm-2d-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.
Address Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Funding PMID:28115723; PMCID:PMC5307443 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 67
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)