Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Ahern, K.; Bourassa, M.A.; Hart, R.E.; Zhang, J.A.; Rogers, R.F. url  doi
openurl 
  Title Observed Kinematic and Thermodynamic Structure in the Hurricane Boundary Layer During Intensity Change Type $loc['typeJournal Article']
  Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume Issue Pages  
  Keywords  
  Abstract The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency &#8805; 20 kt (24 h)&#8722;1], weakening [WE; intensity tendency < &#8722;10 kt (24 h)&#8722;1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3,091 dropsondes were composited for analysis below 2.5 km elevation—1,086 during IN, 1,042 during WE, and 963 during SS. In non-intensifying hurricanes, the lowlevel tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I) at those radii for non-intensifying hurricanes. Differences in tangential wind structure (and I) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Non-intensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (&#952;e) and conditional stability are highest inside the RMW of non-intensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer &#952;e is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1031  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2019 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)