Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Jackson, L.C.; Dubois, C.; Forget, G.; Haines, K.; Harrison, M.; Iovino, D.; Köhl, A.; Mignac, D.; Masina, S.; Peterson, K.A.; Piecuch, C.G.; Roberts, C.D.; Robson, J.; Storto, A.; Toyoda, T.; Valdivieso, M.; Wilson, C.; Wang, Y.; Zuo, H. url  doi
openurl 
  Title The Mean State and Variability of the North Atlantic Circulation: A Perspective From Ocean Reanalyses Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 124 Issue 12 Pages 8969-9003  
  Keywords  
  Abstract The transfer of Indian Ocean thermocline and intermediate waters into the South Atlantic via the Agulhas leakage is generally believed to be primarily accomplished through mesoscale eddy processes, essentially anticyclones known as Agulhas Rings. Here we take advantage of a recent eddy tracking algorithm and Argo float profiles to study the evolution and the thermohaline structure of one of these eddies over the course of 1.5 years (May 2013–November 2014). We found that during this period the ring evolved according to two different phases: During the first one, taking place in winter, the mixing layer in the eddy deepened significantly. During the second phase, the eddy subsided below the upper warmer layer of the South Atlantic subtropical gyre while propagating west. The separation of this eddy from the sea surface could explain the decrease in its surface signature in satellite altimetry maps, suggesting that such changes are not due to eddy dissipation processes. It is a very large eddy (7.1×1013 m3 in volume), extending, after subduction, from a depth of 200–1,200 m and characterized by two mode water cores. The two mode water cores represent the largest eddy heat and salt anomalies when compared with the surrounding. In terms of its impact over 1 year, the north‐westward propagation of this long‐lived anticyclone induces a transport of 2.2 Sv of water, 0.008 PW of heat, and 2.2×105 kg s−1 of salt. These results confirm that Agulhas Rings play a very important role in the Indo‐Atlantic interocean exchange of heat and salt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1080  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2020 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)