|   | 
Details
   web
Record
Author (up) Kvaleberg, E
Title Generation of Cold Core Filaments and Eddies Through Baroclinic Instability on a Continental Shelf Type $loc['typeManuscript']
Year 2004 Publication Abbreviated Journal
Volume Issue Pages
Keywords Eddies, Baroclinic Instability, Filaments, Numerical Modeling, Shelf
Abstract The formation of cold core filaments on an idealized continental shelf is investigated using a numerical model to simulate the ocean's response to surface cooling. A horizontal density gradient forms because of uneven buoyancy loss due to the sloping bottom, and this gradient induces an alongshelf current in thermal wind balance, that in time becomes unstable. As the instabilities grow, filaments, and later eddies, are generated so that dense water near the coast is mixed offshore. Scaling arguments of the filament wavelength indicate that the current is baroclinically unstable, and an analytical model of the frontal expansion with time is in very good agreement with the simulations. This study was inspired by satellite observations of sea surface temperature on the West Florida Shelf during the winter months, in which it is clearly seen that cold core filaments extend from a thermal front. Numerical experiments are therefore designed to allow for reliable comparisons with conditions in this region.
Address Department of Oceanography
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 592
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)