|   | 
Details
   web
Records
Author Aretxabaleta, A.; Blanton, B.O.; Seim, H.E.; Werner, F.E.; Nelson, J.R.; Chassignet, E.P.
Title Cold event in the South Atlantic Bight during summer of 2003: Model simulations and implications Type $loc['typeJournal Article']
Year 2007 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 112 Issue C5 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 427
Permanent link to this record
 

 
Author Baigorria, G.; Jones, J.; Shin, D.; Mishra, A.; Ingram, K. T., Jones, J. W., O'Brien, J. J., Roncoli, M. C., Fraisse, C., Breuer, N. E., Bartels, W.-L., Zierden, D. F., Letson, D.
Title Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs Type $loc['typeJournal Article']
Year 2007 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 34 Issue Pages 211-222
Keywords crop yield forecasts; regional circulation models; crop models; bias correction; seasonal climate forecasts
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 421
Permanent link to this record
 

 
Author Baigorria, G.A.; Jones, J.W.; O'Brien, J.J.
Title Understanding rainfall spatial variability in southeast USA at different timescales Type $loc['typeJournal Article']
Year 2007 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.
Volume 27 Issue 6 Pages 749-760
Keywords rainfall; climate; spatial variation; correlation matrix; semivariograms
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0899-8418 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 428
Permanent link to this record
 

 
Author Bourassa, M. A., D. Dukhovskoy, S. L. Morey, and J, J. O'Brien
Title Innovations in Modeling Gulf of Mexico Surface Turbulent Fluxes Type $loc['typeMagazine Article']
Year 2007 Publication Flux News Abbreviated Journal
Volume Issue 3 Pages 9
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding NOAA, COD, NASA, OVWST, NSF Approved $loc['no']
Call Number COAPS @ mfield @ Serial 707
Permanent link to this record
 

 
Author Bourassa, M. A., R. N. Maue, S. R. Smith, P. J. Hughes, and J. Rolph
Title Global Winds: State of the Climate in 2006 Type $loc['typeJournal Article']
Year 2007 Publication Bulletin of the American Meteorological Society Abbreviated Journal
Volume 88 Issue 6 Pages 135
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Arguez, A.; Diamond, H. D.; Fetterer, F.; Horvitz, A.; Levy, J. M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding NOAA, NASA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 706
Permanent link to this record
 

 
Author Brolley, J. M.
Title Effects of ENSO, NAO (PVO), and PDO on Monthly Extreme Temperatures and Precipitation Type $loc['typeManuscript']
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords NAO, PDO, ENSO, Climate Variability, Extremes, Stochastic
Abstract The El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the Polar Vortex Oscillation (PVO) produce conditions favorable for monthly extreme temperatures and precipitation. These climate modes produce upper-level teleconnection patterns that favor regional droughts, floods, heat waves, and cold spells, and these extremes impact agriculture, energy, forestry, and transportation. The above sectors prefer the knowledge of the worst (and sometimes the best) case scenarios. This study examines the extreme scenarios for each phase and the combination of phases that produce the greatest monthly extremes. Data from Canada, Mexico, and the United States are gathered from the Historical Climatology Network (HCN). Monthly data are simulated by the utilization of a Monte Carlo model. This Monte Carlo method simulates monthly data by the stochastic selection of daily data with identical ENSO, PDO, and PVO (NAO) characteristics. In order to test the quality of the Monte Carlo simulation, the simulations are compared with the observations using only PDO and PVO. It has been found that temperatures and precipitation in the simulation are similar to the model. Statistics tests have favored similarities between simulations and observations in most cases. Daily data are selected in blocks of four to eight days in order to conserve temporal correlation. Because the polar vortex occurs only during the cold season, the PVO is used during January, and the NAO is used during other months. The simulated data are arranged, and the tenth and ninetieth percentiles are analyzed. The magnitudes of temperature and precipitation anomalies are the greatest in the western Canada and the southeastern United States during winter, and these anomalies are located near the Pacific North American (PNA) extrema. Western Canada has its coldest (warmest) Januaries when the PDO and PVO are low (high). The southeastern United States has its coldest Januaries with high PDO and low PVO and warmest Januaries with low PDO and high PVO. Although extremes occur during El Nino or La Nina, many stations have the highest or lowest temperatures during neutral ENSO. In California and the Gulf Coast, the driest (wettest) Januaries tend to occur during low (high) PDO, and the reverse occurs in Tennessee, Kentucky, Ohio, and Indiana. Summertime anomalies, on the other hand, are weak because temperature variance is low. Phase combinations that form the wettest (driest) Julies form spatially incoherent patterns. The magnitudes of the temperature and precipitation anomalies and the corresponding phase combinations vary regionally and seasonally. Composite maps of geopotential heights across North America are plot for low, median, and high temperatures at six selected sites and for low, median, and high precipitation at the same sites. The greatest fluctuations occur near the six sites and over some of the loci of the PNA pattern. Geopotential heights tend to decrease (increase) over the target stations during the cold (warm) cases, and the results for precipitation are variable.
Address Department of Meteorology
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 587
Permanent link to this record
 

 
Author Brolley, J.M.; O'Brien, J.J.; Schoof, J.; Zierden, D.
Title Experimental drought threat forecast for Florida Type $loc['typeJournal Article']
Year 2007 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 145 Issue 1-2 Pages 84-96
Keywords wildfires; Keetch-Byram drought index; drought; El Nino/Southern oscillation; spectral weather generator
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Funding USDA and NOAA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 422
Permanent link to this record
 

 
Author Cocke, S.; LaRow, T.E.; Shin, D.W.
Title Seasonal rainfall predictions over the southeast United States using the Florida State University nested regional spectral model Type $loc['typeJournal Article']
Year 2007 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 112 Issue D4 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 430
Permanent link to this record
 

 
Author Gierach, M.M.; Bourassa, M.A.; Cunningham, P.; O'Brien, J.J.; Reasor, P.D.
Title Vorticity-Based Detection of Tropical Cyclogenesis Type $loc['typeJournal Article']
Year 2007 Publication Journal of Applied Meteorology and Climatology Abbreviated Journal J. Appl. Meteor. Climatol.
Volume 46 Issue 8 Pages 1214-1229
Keywords Cyclogenesis/cyclolysis; Tropics; Vorticity
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-8424 ISBN Medium
Area Expedition Conference
Funding NASA, OSU, TCSP Approved $loc['no']
Call Number COAPS @ mfield @ Serial 696
Permanent link to this record
 

 
Author Guimond, S. R.
Title A diagnostic study of the effects of trough interactions on tropical cyclone QPF. Type $loc['typeManuscript']
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords Satellites, Precipitation, Tropical Cyclones, Troughs
Abstract A composite study is presented analyzing the influence of upper-tropospheric troughs on the evolution of precipitation in twelve Atlantic tropical cyclones (TCs) between the years 2000 � 2005. The TRMM Multi-Satellite Precipitation Analysis (TMPA) is used to examine the enhancement of precipitation within a 24 h window centered on trough interaction (TI) time in a shear-vector relative coordinate system. Eddy angular momentum flux convergence (EFC) computed from European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses is employed to objectively determine the initiation of a TI while adding insight, along with vertical wind shear, into the intensification of TC vortices. The relative roles of the dynamics (EFC and vertical wind shear) and thermodynamics (moist static energy potential) in TIs are outlined in the context of precipitation enhancement that provides quantitative insight into the “good trough”/“bad trough” paradigm. The largest precipitation rates and enhancements are found in the down-shear left quadrant of the storm, consistent with previous studies of convective asymmetries. Maximum mean enhancement values of 1.4 mm/h are found at the 200 km radius in the down-shear left quadrant. Results indicate that the largest precipitation enhancements occur with “medium” TIs; comprised of EFC values between 17 � 22 (m/s)/day and vertical wind shear Sensitivity tests on the upper vertical wind shear boundary reveal the importance of using the tropopause for wind shear computations when a TC enters mid-latitude regions. Changes in radial mean precipitation ranging from 29 � 40 % across all storm quadrants are found when using the tropopause as the upper boundary on the shear vector. Tests on the lower boundary using QuikSCAT ocean surface wind vectors expose large sensitivities on the precipitation ranging from 42 � 60 % indicating that the standard level of 850 hPa, outside of the boundary layer in most storms, is more physically reliable for computing vertical wind shear. These results should help to improve TC quantitative precipitation forecasting (QPF) as operational forecasters routinely rely on crude statistical methods and rules of thumb for forecasting TC precipitation.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding NASA, OVWST Approved $loc['no']
Call Number COAPS @ mfield @ Serial 610
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)