Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Lim, Y.-K., D. W. Shin, T. E. LaRow, and S. Cocke url  openurl
  Title Categorical predictability of regionalized surface temperature and precipitation over the southeast United States Type $loc['typeReport']
  Year 2007 Publication Research Activities in Atmospheric and Ocean Modeling Abbreviated Journal  
  Volume Issue Pages 7-11  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CAS/JSC Working Group on Numerical Experimentation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 704  
Permanent link to this record
 

 
Author LaRow, T. E., Y.-K. Lim, D. W. Shin, S. D. Cocke, and E. Chassignet url  openurl
  Title High resolution ensemble west Atlantic basin seasonal hurricane simulations Type $loc['typeReport']
  Year 2007 Publication Research Activities in Atmospheric and Ocean Modeling Abbreviated Journal  
  Volume Issue Pages 6-03  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CAS/JSC Working Group on Numerical Experimentation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 703  
Permanent link to this record
 

 
Author Shin, D. W., S. Cocke, T. E. LaRow, and Y.-K. Lim url  openurl
  Title Climate model capability in resolving diurnal cycle of rainfall Type $loc['typeManuscript']
  Year 2007 Publication Research Activities in Atmospheric and Ocean Modeling Abbreviated Journal  
  Volume Issue Pages 4-25  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CAS/JSC Working Group on Numerical Experimentation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 702  
Permanent link to this record
 

 
Author Smith, S. R. url  openurl
  Title Shipboard Automated Meteorological and Oceanographic System (SAMOS) Initiative Type $loc['typeConference Article']
  Year 2007 Publication Report for 4rd session of the JCOMM Ship Observation Team meeting, 16-21 April 2007, Geneva, Switzerland Abbreviated Journal  
  Volume Issue Pages 2  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 705  
Permanent link to this record
 

 
Author Baigorria, G.; Jones, J.; Shin, D.; Mishra, A.; Ingram, K. T., Jones, J. W., O'Brien, J. J., Roncoli, M. C., Fraisse, C., Breuer, N. E., Bartels, W.-L., Zierden, D. F., Letson, D. url  doi
openurl 
  Title Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs Type $loc['typeJournal Article']
  Year 2007 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 34 Issue Pages 211-222  
  Keywords crop yield forecasts; regional circulation models; crop models; bias correction; seasonal climate forecasts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 421  
Permanent link to this record
 

 
Author Bourassa, M. A., D. Dukhovskoy, S. L. Morey, and J, J. O'Brien url  openurl
  Title Innovations in Modeling Gulf of Mexico Surface Turbulent Fluxes Type $loc['typeMagazine Article']
  Year 2007 Publication Flux News Abbreviated Journal  
  Volume Issue 3 Pages 9  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA, COD, NASA, OVWST, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 707  
Permanent link to this record
 

 
Author Guimond, S. R. url  openurl
  Title A diagnostic study of the effects of trough interactions on tropical cyclone QPF. Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Satellites, Precipitation, Tropical Cyclones, Troughs  
  Abstract A composite study is presented analyzing the influence of upper-tropospheric troughs on the evolution of precipitation in twelve Atlantic tropical cyclones (TCs) between the years 2000 � 2005. The TRMM Multi-Satellite Precipitation Analysis (TMPA) is used to examine the enhancement of precipitation within a 24 h window centered on trough interaction (TI) time in a shear-vector relative coordinate system. Eddy angular momentum flux convergence (EFC) computed from European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses is employed to objectively determine the initiation of a TI while adding insight, along with vertical wind shear, into the intensification of TC vortices. The relative roles of the dynamics (EFC and vertical wind shear) and thermodynamics (moist static energy potential) in TIs are outlined in the context of precipitation enhancement that provides quantitative insight into the “good trough”/“bad trough” paradigm. The largest precipitation rates and enhancements are found in the down-shear left quadrant of the storm, consistent with previous studies of convective asymmetries. Maximum mean enhancement values of 1.4 mm/h are found at the 200 km radius in the down-shear left quadrant. Results indicate that the largest precipitation enhancements occur with “medium” TIs; comprised of EFC values between 17 � 22 (m/s)/day and vertical wind shear Sensitivity tests on the upper vertical wind shear boundary reveal the importance of using the tropopause for wind shear computations when a TC enters mid-latitude regions. Changes in radial mean precipitation ranging from 29 � 40 % across all storm quadrants are found when using the tropopause as the upper boundary on the shear vector. Tests on the lower boundary using QuikSCAT ocean surface wind vectors expose large sensitivities on the precipitation ranging from 42 � 60 % indicating that the standard level of 850 hPa, outside of the boundary layer in most storms, is more physically reliable for computing vertical wind shear. These results should help to improve TC quantitative precipitation forecasting (QPF) as operational forecasters routinely rely on crude statistical methods and rules of thumb for forecasting TC precipitation.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 610  
Permanent link to this record
 

 
Author Brolley, J. M. url  openurl
  Title Effects of ENSO, NAO (PVO), and PDO on Monthly Extreme Temperatures and Precipitation Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords NAO, PDO, ENSO, Climate Variability, Extremes, Stochastic  
  Abstract The El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the Polar Vortex Oscillation (PVO) produce conditions favorable for monthly extreme temperatures and precipitation. These climate modes produce upper-level teleconnection patterns that favor regional droughts, floods, heat waves, and cold spells, and these extremes impact agriculture, energy, forestry, and transportation. The above sectors prefer the knowledge of the worst (and sometimes the best) case scenarios. This study examines the extreme scenarios for each phase and the combination of phases that produce the greatest monthly extremes. Data from Canada, Mexico, and the United States are gathered from the Historical Climatology Network (HCN). Monthly data are simulated by the utilization of a Monte Carlo model. This Monte Carlo method simulates monthly data by the stochastic selection of daily data with identical ENSO, PDO, and PVO (NAO) characteristics. In order to test the quality of the Monte Carlo simulation, the simulations are compared with the observations using only PDO and PVO. It has been found that temperatures and precipitation in the simulation are similar to the model. Statistics tests have favored similarities between simulations and observations in most cases. Daily data are selected in blocks of four to eight days in order to conserve temporal correlation. Because the polar vortex occurs only during the cold season, the PVO is used during January, and the NAO is used during other months. The simulated data are arranged, and the tenth and ninetieth percentiles are analyzed. The magnitudes of temperature and precipitation anomalies are the greatest in the western Canada and the southeastern United States during winter, and these anomalies are located near the Pacific North American (PNA) extrema. Western Canada has its coldest (warmest) Januaries when the PDO and PVO are low (high). The southeastern United States has its coldest Januaries with high PDO and low PVO and warmest Januaries with low PDO and high PVO. Although extremes occur during El Nino or La Nina, many stations have the highest or lowest temperatures during neutral ENSO. In California and the Gulf Coast, the driest (wettest) Januaries tend to occur during low (high) PDO, and the reverse occurs in Tennessee, Kentucky, Ohio, and Indiana. Summertime anomalies, on the other hand, are weak because temperature variance is low. Phase combinations that form the wettest (driest) Julies form spatially incoherent patterns. The magnitudes of the temperature and precipitation anomalies and the corresponding phase combinations vary regionally and seasonally. Composite maps of geopotential heights across North America are plot for low, median, and high temperatures at six selected sites and for low, median, and high precipitation at the same sites. The greatest fluctuations occur near the six sites and over some of the loci of the PNA pattern. Geopotential heights tend to decrease (increase) over the target stations during the cold (warm) cases, and the results for precipitation are variable.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 587  
Permanent link to this record
 

 
Author McDonald, E. M. url  openurl
  Title Designing Reliable Large-Scale Storage Arrays Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Raid, Mttdl, Mtbf, Mttr, Redundancy, Graid  
  Abstract Large-scale storage arrays are always in high demand by universities, government agencies, web search engines, and research laboratories. This unvarying need for more data storage has begun to push storage array magnitudes into an unknown stratum. As storage systems continue to outgrow the terabyte class and move into the petabyte range, these colossal arrays begin to show design limitations. This thesis focuses primarily on disk drives as the building blocks of reliable large-scale storage arrays. As a feasibility baseline, the overall reliability of large-scale storage arrays should be greater than that of a single disk. However, petabyte- and exabyte-sized systems, requiring thousands to millions of disk drives, present a serious challenge in terms of reliability. Therefore, multi-level redundancy schemes must be used in order to slow these dwindling reliabilities. This work, based upon the previous research of redundant arrays of independent disks (RAID) by Patterson et al., introduces the reliability analysis of dual- and tri-level Grouped RAID (GRAID) configurations. As storage arrays rapidly increase in size, the use of multi-level redundancy is essential. Design recommendations for various large-scale storage arrays, ranging from 100 Tebibytes (TiB) to 100 Exbibytes (EiB), can be generated using the custom reliability calculator tool written in MATLAB. The analysis of these design recommendations shows that dual-level GRAID configurations are only recommended for array magnitudes up to 5 PiB. Beyond this threshold, tri-level GRAID demonstrates feasibility for storage magnitudes up to 100 EiB and beyond.  
  Address Department of Electrical and Computer Engineering  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 611  
Permanent link to this record
 

 
Author Putnam, W. M. url  openurl
  Title Development of the Finite-Volume Dynamical Core on the Cubed-Sphere Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Cubed-Sphere, Shallow Water, Advection, Dynamical Core, Finite-Volume  
  Abstract The finite-volume dynamical core has been developed for quasi-uniform cubed-sphere grids within a flexible modeling framework for direct implementation as a modular component within the global modeling efforts at NASA, GFDL-NOAA, NCAR, DOE and other interested institutions. The shallow water equations serve as a dynamical framework for testing the implementation and the variety of quasi-orthogonal cubed-sphere grids ranging from conformal mappings to those numerically generated via elliptic solvers. The cubed-sphere finite-volume dynamical core has been parallelized with a 2-dimensional X-Y domain decomposition to achieve optimal scalability to 100,000s of processors on today's high-end computing platforms at horizontal resolutions of 0.25-degrees and finer. The cubed-sphere fvcore is designed to serve as a framework for hydrostatic and non-hydrostatic global simulations at climate (4- to 1-deg) and weather (25- to 5-km) resolutions, pushing the scale of global atmospheric modeling from the climate/synoptic scale to the meso- and cloud-resolving scale.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)