Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Gouillon, F url  openurl
  Title Internal Wave Propagation and Numerically Induced Diapycnal Mixing in Oceanic General Circulation Models Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords spurious mixing, numerical modeling, internal wave, tide  
  Abstract Numerical ocean models have become powerful tools for providing a realistic view of the ocean state and for describing ocean processes that are difficult to observe. Recent improvements in model performance focus on simulating realistic ocean interior mixing rates, as ocean mixing is the main physical process that creates water masses and maintains their properties. Below the mixed layer, diapycnal mixing primarily arises from the breaking of internal waves, whose energy is largely supplied by winds and tides. This is particularly true in abyssal regions, where the barotropic tide interacts with rough topography and where high levels of diapycnal mixing have been recorded (e.g., the Hawaiian Archipelago). Many studies have discussed the representation of internal wave generation, propagation, and evolution in ocean numerical models. Expanding on these studies, this work seeks to better understand the representation of internal wave dynamics, energetics, and their associated mixing in several different classes of widely used ocean models (e.g., the HYbrid Coordinate Ocean Model, HYCOM; the Regional Ocean Modeling System, ROMS; and the MIT general circulation model, MITgcm). First, a multi-model study investigates the representation of internal waves for a wide spectrum of numerical choices, such as the horizontal and vertical resolution, the vertical coordinate, and the choice of the numerical advection scheme. Idealized configurations are compared to their corresponding analytical solutions. Some preliminary results of realistic baroclinic tidal simulations are shown for the Gulf of Mexico. Second, the spurious diapycnal mixing that exists in models with fixed vertical coordinates (i.e., geopotential and terrain following) is documented and quantified. This purely numerical error arises because, in fixed-coordinate models, the numerical framework cannot properly maintain the adiabatic properties of an advected water parcel. This unrealistic mixing of water masses can be a source of major error in both regional and global ocean models. We use the tracer flux method to compute the spurious diapycnal diffusivities for both a lockexchange scenario and a propagating internal wave field using all three models. Results for the lock exchange experiments are compared to the results of a recent study. Our results, obtained by using three different model classes, provide a comprehensive analysis of the impact of model resolution choice and numerical framework on the magnitude of the spurious diapycnal mixing and the representation of internal waves.  
  Address Department of Oceanography  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 571  
Permanent link to this record
 

 
Author Guimond, S url  openurl
  Title Tropical Cyclone Inner-Core Dynamics: A Latent Heat Retrieval and Its Effects on Intensity and Structure Change; and the Impacts of Effective Diffusion on the Axisymmetrization Process Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Hurricanes, Doppler Radar, Latent Heat, Axisymmetrization, Diffusion, Numerical Modeling  
  Abstract Despite the fact that latent heating in cloud systems drives many atmospheric circulations, including tropical cyclones, little is known of its magnitude and structure due in large part to inadequate observations. In this work, a reasonably high-resolution (2 km), four-dimensional airborne Doppler radar retrieval of the latent heat of condensation is presented for rapidly intensifying Hurricane Guillermo (1997). Several advancements in the retrieval algorithm are shown including: (1) analyzing the scheme within the dynamically consistent framework of a numerical model, (2) identifying algorithm sensitivities through the use of ancillary data sources and (3) developing a precipitation budget storage term parameterization. The determination of the saturation state is shown to be an important part of the algorithm for updrafts of ~ 5 m s-1 or less. The uncertainties in the magnitude of the retrieved heating are dominated by errors in the vertical velocity. Using a combination of error propagation and Monte Carlo uncertainty techniques, biases were found to be small, and randomly distributed errors in the heating magnitude were ~16 % for updrafts greater than 5 m s-1 and ~156 % for updrafts of 1 m s- 1. The impact of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2 km resolution and comparing the generated wind structure to the Doppler radar observations of Guillermo. Results show that using the latent heat retrievals outperforms a simulation that relies on a state-of-the-art microphysics scheme (Reisner and Jeffery 2009), in terms of wind speed root-mean-square errors, explained variance and eye/eyewall structure. The incorrect transport of water vapor (a function of the sub-grid model and the numerical approximations to advection) and the restrictions on the magnitude of heat release that ensure the present model's stability are suggested as sources of error in the simulation without the retrievals. Motivated by the latent heat retrievals, the dynamics of vortex axisymmetrization from the perspective of thermal anomalies is investigated using an idealized, non-linear atmospheric model (HIGRAD). Attempts at reproducing the results of previous work (Nolan and Grasso 2003; NG03) revealed a discrepancy with the impacts of purely asymmetric forcing. While NG03 found that purely asymmetric heating led to a negligible, largely negative impact on the vortex intensification, in the present study the impacts of asymmetries are found to have an important, largely positive role. Absolute angular momentum budgets revealed that the essential difference between the present work and that of NG03 was the existence of a significant, axisymmetric secondary circulation in the basic-state vortex used in the HIGRAD simulations. This secondary circulation was larger than that present in NG03's simulations. The spin-up of the vortex caused by the asymmetric thermal anomalies was dominated by the axisymmetric fluxes of angular momentum at all times, indicating fundamentally different evolution of asymmetries in the presence of radial flow. Radial momentum budgets were performed to elucidate the mechanisms responsible for the formation of the physically significant secondary circulation. Results show that explicit (sub-grid) diffusion in the model was producing a gradient wind imbalance, which drives a radial inflow and associated secondary circulation in an attempt to re-gain balance. In addition, the production of vorticity anomalies from the asymmetric heating was found to be sensitive to the eddy diffusivity, with large differences between HIGRAD and the widely used WRF model for the exact same value of this uncertain parameter.  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 573  
Permanent link to this record
 

 
Author Maue, R url  openurl
  Title Warm Seclusion Extratropical Cyclones Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Tropical Cyclone, Extratropical Cyclone, Climatology, Warm Seclusion  
  Abstract The warm seclusion or mature stage of the extratropical cyclone lifecycle often has structural characteristics reminiscent of major tropical cyclones including eye-like moats of calm air at the barotropic warm-core center surrounded by hurricane force winds along the bent-back warm front. Many extratropical cyclones experience periods of explosive intensification or deepening (bomb) as a result of nonlinear dynamical feedbacks associated with latent heat release. Considerable dynamical structure changes occur during short time periods of several hours in which lower stratospheric and upper-tropospheric origin potential vorticity combines with ephemeral lower-tropospheric, diabatically generated potential vorticity to form a coherent, upright tower circulation. At the center, anomalously warm and moist air relative to the surrounding environment is secluded and may exist for days into the future. Even with the considerable body of research conducted during the last century, many questions remain concerning the warm seclusion process. The focus of this work is on the diagnosis, climatology, and synoptic-dynamic development of the warm seclusion and surrounding flank of intense winds. To develop a climatology of warm seclusion and explosive extratropical cyclones, current long-period reanalysis datasets are utilized along with storm tracking procedures and cyclone phase space diagnostics. Limitations of the reanalysis products are discussed with special focus on tropical cyclone diagnosis and the recent dramatic decrease in global accumulated tropical cyclone energy. A large selection of case studies is simulated with the Weather Research and Forecasting (WRF) mesoscale model using full-physics and “fake dry” adiabatic runs in order to capture the very fast warm seclusion development. Results are presented concerning the critical role of latent heat release and the combination of advective and diabatically generated potential vorticity in the generation of the coherent tower circulation characteristic of the warm seclusion. To motivate future research, issues related to predictability are discussed with focus on medium-range forecasts of varying extratropical cyclone lifecycles. Additional work is presented relating tropical cyclones and large-scale climate variability with special emphasis on the abrupt and dramatic decline in recent global tropical cyclone accumulated cyclone energy.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 570  
Permanent link to this record
 

 
Author May, J url  openurl
  Title Quantifying Variance Due to Temporal and Spatial Difference Between Ship and Satellite Winds Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords QuikSCAT, Winds, SAMOS, Error variance, Collocation  
  Abstract Ocean vector winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite can be validated with in situ data. Ideally the comparison in situ data would be collocated in both time and space to the satellite overpass; however, this is rarely the case because of the time sampling interval of the in situ data and the sparseness of data. To compensate for the lack of ideal collocations, in situ data that are within a certain time and space range of the satellite overpass are used for comparisons. To determine the total amount of random observational error, additional uncertainty from the temporal and spatial difference must be considered along with the uncertainty associated with the data sets. The purpose of this study is to quantify the amount of error associated with the two data sets, as well as the amount of error associated with the temporal and/or spatial difference between two observations. The variance associated with a temporal difference between two observations is initially examined in an idealized case that includes only Shipboard Automated Meteorological and Oceanographic System (SAMOS) one-minute data. Temporal differences can be translated into spatial differences by using Taylor's hypothesis. The results show that as the time difference increases, the amount of variance increases. Higher wind speeds are also associated with a larger amount of variance. Collocated SeaWinds and SAMOS observations are used to determine the total variance associated with a temporal (equivalent) difference from 0 to 60 minutes. If the combined temporal and spatial difference is less than 25 minutes (equivalent), the variance associated with the temporal and spatial difference is offset by the observational errors, which are approximately 1.0 m2s-2 for wind speeds between 4 and 7 ms-1 and approximately 1.5 m2s-2 for wind speeds between 7 and 12 ms-1. If the combined temporal and spatial difference is greater than 25 minutes (equivalent), then the variance associated with the temporal and spatial difference is no longer offset by the variance associated with observational error in the data sets; therefore, the total variance gradually increases as the time difference increases.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 575  
Permanent link to this record
 

 
Author Michael, J-P url  openurl
  Title ENSO Fidelity in Two Coupled Models Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords General Circulation Model, El Nino, Coupled Model, Climate Model, ENSO  
  Abstract This study examines the fidelity of the ENSO simulation in two coupled model integrations and compares this with available global ocean data assimilation. The two models are CAM-HYCOM coupled model developed by the HYCOM Consortium and CCSM3.0. The difference between the two climate models is in the use of different ocean general circulation model (OGCM). The hybrid isopycnal-sigma-pressure coordinate ocean model Hybrid Coordinate Ocean Model (HYCOM) replaces the ocean model Parallel Ocean Program (POP) of the CCSM3.0. In both, the atmospheric general circulation model (AGCM) Community Atmosphere Model (CAM) is used. In this way the coupled systems are compared in a controlled setting so that the effects of the OGCM may be obtained. Henceforth the two models will be referred to as CAM-HYCOM and CAM-POP respectively. Comparison of 200 years of model output is used discarding the first 100 years to account for spin-up issues. Both models (CAM-HYCOM and CAM-POP) are compared to observational data for duration, intensity, and global impacts of ENSO. Based on the analysis of equatorial SST, thermocline depth, wind stress and precipitation, ENSO in the CAM-HYCOM model is weaker and farther east than observations while CAM-POP is zonal and extends west of the international dateline. CAM-POP also has an erroneous biennial cycle of the equatorial pacific SSTs. The analysis of the subsurface ocean advective terms highlights the problems of the model simulations.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 576  
Permanent link to this record
 

 
Author Pantina, P url  openurl
  Title Characterizing the Variability of the Indian Monsoon: Changes in Evaporative Sources for Summertime Rainfall Events Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Variability, Trajectories, India, Monsoon, Evaporative Source, Moisture Source  
  Abstract This study focuses on the interannual and intraseasonal variability of evaporative sources for rainfall events during the Indian monsoon. The monsoon is an important part of the economy and lifestyle in India, thus, any improvements in our understanding of its mechanisms would be directly beneficial to society. We first discuss the use of evaporative sources for rainfall events as an important tool to help increase our knowledge of the variations of the monsoon. We then outline the variability of the monsoon on an interannual (wet and dry years) and intraseasonal (active and break periods) time scale. We use three reanalyses (NCEP-R2, CFSR, and MERRA) and an IMD gridded rainfall dataset to trace the location and strength of evaporative sources via a quasi-isentropic back trajectory program. The program uses reanalysis winds and evaporation, among other parameters, to estimate these sources back in time. We discuss the differences in parameters between the datasets on a seasonal, interannual, and intraseasonal time scale. We then thoroughly investigate the strength and location of evaporative sources between datasets on interannual and intraseasonal time scales, and we attempt to explain the variations by analyzing the differences in the input parameters and circulation mechanisms themselves. The study finds that the evaporative sources for given interannual or intraseasonal rainfall events do vary in strength and location. Interannually, the strongest change in evaporative source occurs over central India and the Arabian Sea, suggesting that the overall monsoon flow contributes moisture for Indian rainfall on this time scale. Intraseasonally, the strongest change in evaporative source occurs over the Bay of Bengal, suggesting that low pressure systems contribute moisture for Indian rainfall on this time scale. All three reanalyses yield similar fields of evaporative source. We conclude that accurate prediction of the Indian monsoon requires improved understanding of both interannual and intraseasonal oscillations since the sources of moisture for these events are unique.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 577  
Permanent link to this record
 

 
Author Williams, M url  openurl
  Title Characterizing Multi-Decadal Temperature Variability in the Southeastern United States Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Meteorology, Climate Variability, Climate, Warm Regime, Cold Regim  
  Abstract Prior studies of the long-term temperature record in the Southeastern United States (SE US) mostly discuss the long-term cooling trend, and the inter-annual variability produced by the region's strong ties to El Niño Southern Oscillation (ENSO). An examination of long-term temperature records in the SE US show clear multi-decadal variations in temperature, with relative warm periods in the 1920's through the mid 1950's and a cool period in the late 1950's through the late 1990's. This substantial shift in multi-decadal variability is not well understood and has not been fully investigated. It appears to account for the long-term downward trend in temperatures. An accurate characterization of this variability could lead to improved interannual and long-term forecasts, which would be useful for agricultural planning, drought mitigation, water management, and preparation for extreme temperature events. Statistical methods are employed to determine the spatial coherence of the observed variability on seasonal time scales. The goal of this study is to characterize the nature of this variability through the analysis of National Weather Service Cooperative Observer Program (COOP) station data in Florida, Georgia, Alabama, North Carolina, and South Carolina. One finding is a shift in the temperature Probability Distribution Function (PDF) between warm regimes and cool regimes.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 578  
Permanent link to this record
 

 
Author Winterbottom, H url  openurl
  Title The Development of a High-Resolution Coupled Atmosphere-Ocean Model and Applications Toward Understanding the Limiting Factors for Tropical Cyclone Intensity Prediction Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Tropical cyclone vortex initialization, Coupled atmosphere-ocean model  
  Abstract The prediction of tropical cyclone (TC) motion has improved greatly in recent decades. However, similar trends remain absent with respect to TC intensity prediction. Several hypotheses have been proposed attempting to explain why dynamical NWP models struggle to predict TC intensity. The leading candidates are as follows: (1) the lack of an evolving ocean (i.e., sea-surface temperature) boundary condition which responds as a function of the atmosphere (e.g., TC) forcing, (2) inappropriate initial conditions for the TC vortex (e.g., lack of data assimilation methods), (3) NWP model grid-length resolutions which are unable to resolve the temporal and length scale for the features believed responsible for TC vortex intensity. modulations (i.e., eye-wall dynamics, momentum transport, vortex Rossby wave interactions, etc.), and (4) physical parametrization which do not adequately represent the air-sea interactions observed during TC passage. In this study, a coupling algorithm for two independent, high-resolution, and state-of-the-art atmosphere and ocean models is developed. The atmosphere model -- the Advanced Weather Research and Forecasting (WRF-ARW) model is coupled to the HYbrid Coordinate Ocean Model (HYCOM) using a (UNIX) platform independent and innovative coupling methodology. Further, within the WRF-ARW framework, a dynamic initialization algorithm is developed to specify the TC vortex initial condition while preserving the synoptic-scale environment. Each of the tools developed in this study is implemented for a selected case-study: TC Bertha (2008) and TC Gustav (2008) for the coupled-model and TC vortex initialization, respectively. The experiment results suggest that the successful prediction (with respect to the observations) for both the ocean response and the TC intensity cannot be achieved by simply incorporating (i.e., coupling) an ocean model and/or by improving the initial structure for the TC. Rather the physical parametrization governing the air-sea interactions is suggested as the one of the weaknesses for the NWP model. This hypothesis is (indirectly) supported through a diagnostic evaluation of the synoptic-scale features (e.g., sea-level pressure and the deep-layer mean wind beyond the influence of the TC) while the assimilated TC vortex is nudged toward the observed intensity value. It is found -- in the case of TC Gustav (2008) using WRF-ARW, that as the assimilated TC vortex intensity approaches that of the observed, the balance between the mass and momentum states for WRF-ARW is compromised leading to unrealistic features for the environmental sea-level pressure and deep-layer (800- to 200-hPa) mean wind surrounding the TC. Forcing WRF-ARW to assimilate a TC vortex of the observed maximum wind-speed intensity may ultimately compromise the prediction for the TC's motion and subsequently mitigate any gains for the corresponding intensity prediction.Suggestions for additions to the coupled atmosphere-ocean model include a wave-model (WAVEWATCH3), the assimilation of troposphere thermodynamic observations, and modifications to the existing atmospheric boundary-layer parametrization. The current suite of atmosphere model parametrizations do not accurately simulate the observed azimuthal and radial variations for the exchange coefficients (e.g., drag and enthalpy) that have been indicated as potentialpredictor variables for TC intensity modulation. However, these modifications should be implemented only after the limitations for the current coupled-model and TC vortex initialization methods are fully evaluated.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 572  
Permanent link to this record
 

 
Author DiNapoli, S url  openurl
  Title Determining the Error Characteristics of H*WIND Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Hurricane, Tropical Cyclones, Wind Analysis, Uncertainty  
  Abstract The HRD Real-time Hurricane Wind Analysis System (H*Wind) is a software application used by NOAA's Hurricane Research Division to create a gridded tropical cyclone wind analysis based on a wide range of observations. One application of H*Wind fields is calibration of scatterometers for high wind speed environments. Unfortunately, the accuracy of the H*Wind product has not been studied extensively, and therefore the accuracy of scatterometer calibrations in these environments is also unknown. This investigation seeks to determine the uncertainty in the H*Wind product and estimate the contributions of several potential error sources. These error sources include random observation errors, relative bias between different data types, temporal drift resulting from combining non-simultaneous measurements, and smoothing and interpolation errors in the H*Wind software. The effects of relative bias between different data types and random observation errors are determined by performing statistical calculations on the observed wind speeds. We show that in the absence of large biases, the total contribution of all error sources results in an uncertainty of approximately 7% near the storm center, which increases to nearly 15% near the tropical storm force wind radius. The H*Wind analysis algorithm is found to introduce a positive bias to the wind speeds near the storm center, where the analyzed wind speeds are enhanced to match the highest observations. In addition, spectral analyses are performed to ensure that the filter wavelength of the final analysis product matches user specifications. With increased knowledge of these error sources and their effects, researchers will have a better understanding of the uncertainty in the H*Wind product, and can then judge the suitability of H*Wind for various research applications  
  Address Department of Earth, Ocean, and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 574  
Permanent link to this record
 

 
Author Boisserie, M url  openurl
  Title Generation of an empirical soil moisture initialization and its potential impact on subseasonal forecasting skill of continental precipitation and air temperature Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The effect of the PAR technique on the model soil moisture estimates is evaluated using the Global Soil Wetness Project Phase 2 (GSWP-2) multimodel analysis product (used as a proxy for global soil moisture observations) and actual in-situ observations from the state of Illinois. The results show that overall the PAR technique is effective; across most of the globe, the seasonal and anomaly variability of the model soil moisture estimates well reproduce the values of GSWP-2 in the top 1.5 m soil layer; by comparing to in-situ observations in Illinois, we find that the seasonal and anomaly soil moisture variability is also well represented deep into the soil. Therefore, in this study, we produce a new global soil moisture analysis dataset that can be used for many land surface studies (crop modeling, water resource management, soil erosion, etc.). Then, the contribution of the resulting soil moisture analysis (used as initial conditions) on air temperature and precipitation forecasts are investigated. For this, we follow the experimental set up of a model intercomparison study over the time period 1986-1995, the Global Land-Atmosphere Coupling Experiment second phase (GLACE-2), in which the FSU/COAPS climate model has participated. The results of the summertime air temperature forecasts show a significant increase in skill across most of the U.S. at short-term to subseasonal time scales. No increase in summertime precipitation forecasting skill is found at short-term to subseasonal time scales between 1986 and 1995, except for the anomalous drought year of 1988. We also analyze the forecasts of two extreme hydrological events, the 1988 U.S. Drought and the 1993 U.S. flood. In general, the comparison of these two extreme hydrological event forecasts shows greater improvement for the summertime of 1988 than that of 1993, suggesting that soil moisture contributes more to the development of a drought than a flood. This result is consistent with Dirmeyer and Brubaker [1999] and Weaver et al. [2009]. By analyzing the evaporative sources of these two extreme events using the back-trajectory methodology of Dirmeyer and Brubaker [1999], we find similar results as this latter paper; the soil moisture-precipitation feedback mechanism seems to play a greater role during the drought year of 1988 than the flood year of 1993. Finally, the accuracy of this soil moisture initialization depends upon the quality of the precipitation dataset that is assimilated. Because of the lack of observed precipitation at a high temporal resolution (3-hourly) for the study period (1986-1995), a reanalysis product is used for precipitation assimilation in this study. It is important to keep in mind that precipitation data in reanalysis sometimes differ significantly from observations since precipitation is often not assimilated into the reanalysis model. In order to investigate that aspect, a similar analysis to that we performed in this study could be done using the 3-hourly Tropical Rainfall Measuring Mission (TRMM) dataset available for a the time period 1998-present. Then, since the TRMM dataset is a fully observational dataset, we expect the soil moisture initialization to be improved over that obtained in this study, which, in turn, may further increase the forecast skill.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 569  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)