|   | 
Details
   web
Records
Author (up) Stauffer, C. L.
Title Air-sea coupling dependency on sea surface temperature fronts as observed by research vessel data Type $loc['typeManuscript']
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Department of Earth Ocean and Atmospheric Science
Corporate Author Thesis $loc['Bachelor's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 945
Permanent link to this record
 

 
Author (up) Steffen, J.; Bourassa, M.
Title Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 48 Issue 9 Pages 1951-1968
Keywords SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC
Abstract The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 970
Permanent link to this record
 

 
Author (up) Stukel, M. R.; Song, H.; Goericke, R.; Miller, A.J.
Title The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem Type $loc['typeJournal Article']
Year 2018 Publication Limnology and Oceanography Abbreviated Journal
Volume 63 Issue 1 Pages 363-383
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 362
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D.
Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal
Volume Issue Pages
Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae
Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['yes']
Call Number COAPS @ user @ Serial 967
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Decima, M.; Kelly, T.B.
Title A new approach for incorporating 15N isotopic data into linear inverse ecosystem models with Markov Chain Monte Carlo sampling Type $loc['typeJournal Article']
Year 2018 Publication PloS one Abbreviated Journal PLoS One
Volume 13 Issue 6 Pages e0199123
Keywords Isotopic data; Nitrogen-based ecosystem models; Phytoplankton; Defecation by grazers; Mortality by phytoplankton
Abstract Oceanographic field programs often use delta15N biogeochemical measurements and in situ rate measurements to investigate nitrogen cycling and planktonic ecosystem structure. However, integrative modeling approaches capable of synthesizing these distinct measurement types are lacking. We develop a novel approach for incorporating delta15N isotopic data into existing Markov Chain Monte Carlo (MCMC) random walk methods for solving linear inverse ecosystem models. We test the ability of this approach to recover food web indices (nitrate uptake, nitrogen fixation, zooplankton trophic level, and secondary production) derived from forward models simulating the planktonic ecosystems of the California Current and Amazon River Plume. We show that the MCMC with delta15N approach typically does a better job of recovering ecosystem structure than the standard MCMC or L2 minimum norm (L2MN) approaches, and also outperforms an L2MN with delta15N approach. Furthermore, we find that the MCMC with delta15N approach is robust to the removal of input equations and hence is well suited to typical pelagic ecosystem studies for which the system is usually vastly under-constrained. Our approach is easily extendable for use with delta13C isotopic measurements or variable carbon:nitrogen stoichiometry.
Address Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Funding strtoupper('2').strtolower('9912928'); strtoupper('P').strtolower('MC6005467') Approved $loc['no']
Call Number COAPS @ user @ Serial 975
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Décima, M.; Landry, M.R.; Selph, K.E.
Title Nitrogen and isotope flows through the Costa Rica Dome upwelling ecosystem: The crucial mesozooplankton role in export flux Type $loc['typeJournal Article']
Year 2018 Publication Global Biogeochemical Cycles Abbreviated Journal Global Biogeochemical Cycles
Volume 32 Issue 12 Pages 18151832.
Keywords Crustaceans; Diel vertical migration; Nitrogen cycle; Biological carbon pump; Nitrogen isotopes; Linear inverse ecosystem model
Abstract The Costa Rica Dome (CRD) is an open-ocean upwelling ecosystem, with high biomasses of picophytoplankton (especially Synechococcus), mesozooplankton, and higher trophic levels. To elucidate the food web pathways supporting the trophic structure and carbon export in this unique ecosystem, we used Markov Chain Monte Carlo techniques to assimilate data from four independent realizations of &#948;15N and planktonic rate measurements from the CRD into steady state, multicompartment ecosystem box models (linear inverse models). Model results present well-constrained snapshots of ecosystem nitrogen and stable isotope fluxes. New production is supported by upwelled nitrate, not nitrogen fixation. Protistivory (rather than herbivory) was the most important feeding mode for mesozooplankton, which rely heavily on microzooplankton prey. Mesozooplankton play a central role in vertical nitrogen export, primarily through active transport of nitrogen consumed in the surface layer and excreted at depth, which comprised an average 36-46% of total export. Detritus or aggregate feeding is also an important mode of resource acquisition by mesozooplankton and regeneration of nutrients within the euphotic zone. As a consequence, the ratio of passively sinking particle export to phytoplankton production is very low in the CRD. Comparisons to similar models constrained with data from the nearby equatorial Pacific demonstrate that the dominant role of vertical migrators to the biological pump is a unique feature of the CRD. However, both regions show efficient nitrogen transfer from mesozooplankton to higher trophic levels (as expected for regions with large fish, cetacean, and seabird populations) despite the dominance of protists as major grazers of phytoplankton.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 978
Permanent link to this record
 

 
Author (up) van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Blanke, B.; Chassignet, E.P.; Cheng, Y.; Cotter, C.J.; Deleersnijder, E.; Döös, K.; Drake, H.F.; Drijfhout, S.; Gary, S.F.; Heemink, A.W.; Kjellsson, J.; Koszalka, I.M.; Lange, M.; Lique, C.; MacGilchrist, G.A.; Marsh, R.; Mayorga Adame, C.G.; McAdam, R.; Nencioli, F.; Paris, C.B.; Piggott, M.D.; Polton, J.A.; Rühs, S.; Shah, S.H.A.M.; Thomas, M.D.; Wang, J.; Wolfram, P.J.; Zanna, L.; Zika, J.D.
Title Lagrangian ocean analysis: Fundamentals and practices Type $loc['typeJournal Article']
Year 2018 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 121 Issue Pages 49-75
Keywords Ocean circulation; Lagrangian analysis; Connectivity; Particle tracking; Future modelling
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 466
Permanent link to this record
 

 
Author (up) Venugopal, T.; Ali, M.M.; Bourassa, M.A.; Zheng, Y.; Goni, G.J.; Foltz, G.R.; Rajeevan, M.
Title Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall Type $loc['typeJournal Article']
Year 2018 Publication SCIENTIFIC REPORTS Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages 12092
Keywords SEA-SURFACE TEMPERATURE; EL-NINO; EQUATORIAL PACIFIC; IMPACT; PREDICTION; ENSO; DIPOLE; REGION; SST
Abstract This study examines the benefit of using Ocean Mean Temperature (OMT) to aid in the prediction of the sign of Indian Summer Monsoon Rainfall (ISMR) anomalies. This is a statistical examination, rather than a process study. The thermal energy needed for maintaining and intensifying hurricanes and monsoons comes from the upper ocean, not just from the thin layer represented by sea surface temperature (SST) alone. Here, we show that the southwestern Indian OMT down to the depth of the 26 degrees C isotherm during January-March is a better qualitative predictor of the ISMR than SST. The success rate in predicting above- or below-average ISMR is 80% for OMT compared to 60% for SST. Other January-March mean climate indices (e.g., NINO3.4, Indian Ocean Dipole Mode Index, El Nino Southern Oscillation Modoki Index) have less predictability (52%, 48%, and 56%, respectively) than OMT percentage deviation (PD) (80%). Thus, OMT PD in the southwestern Indian Ocean provides a better qualitative prediction of ISMR by the end of March and indicates whether the ISMR will be above or below the climatological mean value.
Address Ministry of Earth Sciences, Government of India, New Delhi, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('0108244'); strtoupper('P').strtolower('MC6092415') Approved $loc['no']
Call Number COAPS @ user @ Serial 972
Permanent link to this record
 

 
Author (up) Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 123 Issue 8 Pages 5808-5823
Keywords Iceland; Scotland overflow water; Charlie; Gibbs fracture zone; variability; volume transport; eddying simulation
Abstract Observations show that the westward transport of the Iceland&#8208;Scotland overflow water (ISOW) through the Charlie&#8208;Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35&#8208;year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large&#8208;scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid&#8208;Atlantic Ridge, suggesting an out&#8208;of&#8208;phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 952
Permanent link to this record
 

 
Author (up) Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume Issue 8 Pages
Keywords
Abstract Observations show that the westward transport of the Iceland&#8208;Scotland overflow water (ISOW) through the Charlie&#8208;Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35&#8208;year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large&#8208;scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid&#8208;Atlantic Ridge, suggesting an out&#8208;of&#8208;phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1023
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)