Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. url  doi
openurl 
  Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
  Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews  
  Volume 192 Issue Pages 282-299  
  Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE  
  Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-3791 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 971  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V.; Mishra, A.; Wootten, A.; Boyles, R.; Bowden, J. H.; Terando, A. J. url  doi
openurl 
  Title Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model Type $loc['typeJournal Article']
  Year 2018 Publication Climatic Change Abbreviated Journal  
  Volume 147 Issue 1-2 Pages 133-147  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 550  
Permanent link to this record
 

 
Author Glazer, R. H.; Misra, V. url  doi
openurl 
  Title Ice versus liquid water saturation in simulations of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume Issue Pages  
  Keywords Indian monsoon; Regional modeling; Saturation vapor pressure; Cloud microphysics scheme  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 943  
Permanent link to this record
 

 
Author Misra, V; Bhardwaj, A; Mishra, A url  doi
openurl 
  Title Characterizing the rainy season of Peninsular Florida Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume 51 Issue 5-6 Pages 2157-2167  
  Keywords  
  Abstract Peninsular Florida (PF) has a very distinct wet season that can be objectively defined with onset and demise dates based on daily rainfall. The dramatic onset of rains and its retreat coincides with the seasonal cycle of the regional scale atmospheric and upper ocean circulations and upper ocean heat content of the immediate surrounding ocean. The gradual warming of the Intra-Americas Seas (IAS; includes Gulf of Mexico, Caribbean Sea and parts of northwestern subtropical Atlantic Ocean) with the seasonal evolution of the Loop Current and increased atmospheric heat flux in to the ocean eventually enhance the moisture flux into terrestrial PF around the time of the onset of the Rainy Season of PF (RSPF). Similarly, the RSPF retreats with the cooling of the IAS that coincides with the weakening of the Loop Current and reduction of the upper ocean heat content of the IAS. It is also shown that anomalous onset and demise dates of the RSPF have implications on its seasonal rainfall anomalies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 556  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A.; Mishra, A. url  doi
openurl 
  Title Local onset and demise of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume 51 Issue 5-6 Pages 1609-1622  
  Keywords Indian monsoon; ENSO; Onset of monsoon  
  Abstract This paper introduces an objective definition of local onset and demise of the Indian summer monsoon (ISM) at the native grid of the Indian Meteorological Department's rainfall analysis based on more than 100 years of rain gauge observations. The variability of the local onset/demise of the ISM is shown to be closely associated with the All India averaged rainfall onset/demise. This association is consistent with the corresponding evolution of the slow large-scale reversals of upper air and ocean variables that raise the hope of predictability of local onset and demise of the ISM. The local onset/demise of the ISM also show robust internannual variations associated with El Nino and the Southern Oscillation and Indian Ocean dipole mode. It is also shown that the early monsoon rains over northeast India has a predictive potential for the following seasonal anomalies of rainfall and seasonal length of the monsoon over rest of India.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 360  
Permanent link to this record
 

 
Author Laurencin, C.; Misra, V. url  doi
openurl 
  Title Characterizing the Variations of the motion of the North Atlantic tropical cyclones Type $loc['typeJournal Article']
  Year 2018 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 130 Issue 303 Pages 1-12  
  Keywords climatology; interannual scales; environment  
  Abstract In this study, we examine the seasonal and interannual variability of the North Atlantic (NATL) tropical cyclone (TC) motion from the historical Hurricane Database (HURDAT2) over the period 1988-2014. We characterize these motions based on their position, lifecycle, and seasonal cycle. The main findings of this study include: (1) of the 11,469 NATL TC fixes examined between 1988 and 2014, 81% of them had a translation speed of < 20 mph; (2) TCs in the deep tropics of the NATL are invariably slow-moving in comparison with TCs in higher latitudes. Although fast-moving TCs (> 40 mph) are exclusively found north of 30 N, the slow-moving TCs have a wide range of latitude. This is largely a consequence of the background steering flow being weaker (stronger) in the tropical (higher) latitudes with a minimum around the subtropical latitudes of NATL; (3) there is an overall decrease in the frequency of all categories of translation speed of TCs in warm relative to cold El Niño Southern Oscillation (ENSO) years. However, in terms of the percentage change, TCs with a translation speed in the range of 10-20 mph display the most change (42%) in warm relative to cold ENSO years; and (4) there is an overall decrease in frequency across all categories of TC translation speed in small relative to large Atlantic Warm Pool years, but in terms of percentage change in the frequency of TCs, there is a significant and comparable change in the frequency over a wider range of translation speeds than the ENSO composites. This last finding suggests that Atlantic Warm Pool variations have a more profound impact on the translation speed of Atlantic TCs than ENSO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 991  
Permanent link to this record
 

 
Author LaCasce, J.H.; Escartin, J.; Chassignet, E.P.; Xu, X. url  doi
openurl 
  Title Jet instability over smooth, corrugated and realistic bathymetry Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume Issue Pages  
  Keywords  
  Abstract The stability of a horizontally- and vertically-sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth which are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow anti-parallel to topographic wave propagation), and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer.

A ridge with a 1 km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echosounding reveal that such heights are common, beneath the Kuroshio, the Antarctic Circumpolar Current and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus lateral instability may be more common than previously thought, due to topography hindering vertical energy transfer.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 998  
Permanent link to this record
 

 
Author Robinson, W.; Speich, S.; Chassignet, E. url  doi
openurl 
  Title Exploring the Interplay Between Ocean Eddies and the Atmosphere Type $loc['typeJournal Article']
  Year 2018 Publication Eos Abbreviated Journal Eos  
  Volume 99 Issue Pages  
  Keywords Mesoscale; Climate; Variability; Atmospheric  
  Abstract Climate models, for the first time, have sufficient resolution to capture mesoscale ocean eddies and their interactions with the atmosphere.New model results suggest that the atmosphere, at weather scales or larger, responds to cumulative effects of the much smaller ocean eddies. Intriguing new model results presented at the workshop suggested that the atmosphere, at weather scales or larger.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2324-9250 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 988  
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P., Wang, F. url  doi
openurl 
  Title On the variability of the Atlantic meridional overturning circulation transports in coupled CMIP5 simulations Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn.  
  Volume 51 Issue 11 Pages 6511-6531  
  Keywords NAO-AMOC; CMIP5; NAO index; AMOC index; meridional pressure gradient; magnitude; structure change of the NAO.  
  Abstract The Atlantic meridional overturning circulation (AMOC) plays a fundamental role in the climate system, and long-term climate simulations are used to understand the AMOC variability and to assess its impact. This study examines the basic characteristics of the AMOC variability in 44 CMIP5 (Phase 5 of the Coupled Model Inter-comparison Project) simulations, using the 18 atmospherically-forced CORE-II (Phase 2 of the Coordinated Ocean-ice Reference Experiment) simulations as a reference. The analysis shows that on interannual and decadal timescales, the AMOC variability in the CMIP5 exhibits a similar magnitude and meridional coherence as in the CORE-II simulations, indicating that the modeled atmospheric variability responsible for AMOC variability in the CMIP5 is in reasonable agreement with the CORE-II forcing. On multidecadal timescales, however, the AMOC variability is weaker by a factor of more than 2 and meridionally less coherent in the CMIP5 than in the CORE-II simulations. The CMIP5 simulations also exhibit a weaker long-term atmospheric variability in the North Atlantic Oscillation (NAO). However, one cannot fully attribute the weaker AMOC variability to the weaker variability in NAO because, unlike the CORE-II simulations, the CMIP5 simulations do not exhibit a robust NAO-AMOC linkage. While the variability of the wintertime heat flux and mixed layer depth in the western subpolar North Atlantic is strongly linked to the AMOC variability, the NAO variability is not.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 981  
Permanent link to this record
 

 
Author Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D. url  doi
openurl 
  Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
  Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal  
  Volume Issue Pages  
  Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae  
  Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['yes']  
  Call Number COAPS @ user @ Serial 967  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)