|   | 
Details
   web
Records
Author Stukel, M.R.; Decima, M.; Kelly, T.B.
Title A new approach for incorporating 15N isotopic data into linear inverse ecosystem models with Markov Chain Monte Carlo sampling Type $loc['typeJournal Article']
Year 2018 Publication PloS one Abbreviated Journal PLoS One
Volume 13 Issue 6 Pages e0199123
Keywords Isotopic data; Nitrogen-based ecosystem models; Phytoplankton; Defecation by grazers; Mortality by phytoplankton
Abstract Oceanographic field programs often use delta15N biogeochemical measurements and in situ rate measurements to investigate nitrogen cycling and planktonic ecosystem structure. However, integrative modeling approaches capable of synthesizing these distinct measurement types are lacking. We develop a novel approach for incorporating delta15N isotopic data into existing Markov Chain Monte Carlo (MCMC) random walk methods for solving linear inverse ecosystem models. We test the ability of this approach to recover food web indices (nitrate uptake, nitrogen fixation, zooplankton trophic level, and secondary production) derived from forward models simulating the planktonic ecosystems of the California Current and Amazon River Plume. We show that the MCMC with delta15N approach typically does a better job of recovering ecosystem structure than the standard MCMC or L2 minimum norm (L2MN) approaches, and also outperforms an L2MN with delta15N approach. Furthermore, we find that the MCMC with delta15N approach is robust to the removal of input equations and hence is well suited to typical pelagic ecosystem studies for which the system is usually vastly under-constrained. Our approach is easily extendable for use with delta13C isotopic measurements or variable carbon:nitrogen stoichiometry.
Address Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Funding strtoupper('2').strtolower('9912928'); strtoupper('P').strtolower('MC6005467') Approved $loc['no']
Call Number COAPS @ user @ Serial 975
Permanent link to this record
 

 
Author Maksimova, E.V.
Title A conceptual view on inertial internal waves in relation to the subinertial flow on the central west Florida shelf Type $loc['typeJournal Article']
Year 2018 Publication Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages 15952
Keywords GRAVITY-WAVES; HARMONIC-ANALYSIS; OCEAN; GENERATION; PATHWAYS; SPECTRUM
Abstract The study reported here focuses on inertial internal wave currents on the west Florida midshelf in 50 m depth. In situ observations showed that the seasonal shifts in stratification change both the frequency range of inertial internal waves and their modulation time scales. According to the analysis, the subinertial flow evolution time scales also undergo compatible seasonal variations, and the inertial internal wave currents appear to be temporally and spatially related to the subinertial flow. Specifically, the subinertial flow evolving on frontal-/quasi-geostrophic time scales appears to be accompanied by the near-inertial oscillations/inertia-gravity waves in corresponding small/finite Burger number regimes, respectively. The quasi-geostrophic subinertial currents on the west Florida shelf are probably associated with the synoptic wind-forced flow, whereas the frontal-geostrophic currents are related to the evolution of density fronts. Further details of this conceptual view should, however, be elucidated in the future.
Address Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, 32306, USA. evm07c@my.fsu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Funding 0374060PMC6206015 Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 982
Permanent link to this record
 

 
Author Venugopal, T.; Ali, M.M.; Bourassa, M.A.; Zheng, Y.; Goni, G.J.; Foltz, G.R.; Rajeevan, M.
Title Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall Type $loc['typeJournal Article']
Year 2018 Publication SCIENTIFIC REPORTS Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages 12092
Keywords SEA-SURFACE TEMPERATURE; EL-NINO; EQUATORIAL PACIFIC; IMPACT; PREDICTION; ENSO; DIPOLE; REGION; SST
Abstract This study examines the benefit of using Ocean Mean Temperature (OMT) to aid in the prediction of the sign of Indian Summer Monsoon Rainfall (ISMR) anomalies. This is a statistical examination, rather than a process study. The thermal energy needed for maintaining and intensifying hurricanes and monsoons comes from the upper ocean, not just from the thin layer represented by sea surface temperature (SST) alone. Here, we show that the southwestern Indian OMT down to the depth of the 26 degrees C isotherm during January-March is a better qualitative predictor of the ISMR than SST. The success rate in predicting above- or below-average ISMR is 80% for OMT compared to 60% for SST. Other January-March mean climate indices (e.g., NINO3.4, Indian Ocean Dipole Mode Index, El Nino Southern Oscillation Modoki Index) have less predictability (52%, 48%, and 56%, respectively) than OMT percentage deviation (PD) (80%). Thus, OMT PD in the southwestern Indian Ocean provides a better qualitative prediction of ISMR by the end of March and indicates whether the ISMR will be above or below the climatological mean value.
Address Ministry of Earth Sciences, Government of India, New Delhi, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('0108244'); strtoupper('P').strtolower('MC6092415') Approved $loc['no']
Call Number COAPS @ user @ Serial 972
Permanent link to this record
 

 
Author Kelly, T. B.
Title Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeManuscript']
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Department of Earth Ocean and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 944
Permanent link to this record
 

 
Author O'hara, S. H.; Arko, R. A.; Clark, D.; Chandler, C. L.; Elya, J. L.; Ferrini, V. L.; McLain, K.; Olson, C. J.; Sellers, C. J.; Smith, S. R.; Stocks, K. I.; Stolp, L.; Carbotte, S. M.
Title Rolling Deck to Repository (R2R) Program Data Services for the Oceanographic Research Community Type $loc['typeJournal Article']
Year 2018 Publication American Geophysical Union Abbreviated Journal
Volume Issue Pages
Keywords 4299 General or miscellaneous, OCEANOGRAPHY: GENERAL
Abstract Research vessels supported by NSF are critical platforms contributing to academic oceanographic research in the US. The “underway” data sets obtained from the continuously operating geophysical, water column, and meteorological sensors aboard these vessels provide characterization of basic environmental conditions for the oceans and are of high scientific value for building global syntheses, climatologies, and historical time series of ocean properties (e.g the World Ocean Atlas, the GMRT bathymetric synthesis, ICOADS). The Rolling deck to Repository program (www.rvdata.us) provides a central shore-side data gateway that ensures the basic documentation, assessment and submission of all environmental data from ship operators to the NOAA long-term archives for these data.

R2R provides a set of data services for the oceanographic research community, including: publishing an online, searchable and browsable master cruise catalog, supported by cruise and data set DOIs; organizing, archiving, and disseminating original underway data and documents; assessing data quality on select data types; creating select post-field data products; and supporting at-sea event logging.

In this presentation we will discuss new developments in R2R data services and challenges associated with ship-based data management. A significant challenge is the dramatic increase in data volumes associated with new sensors (e.g. the EK80 Sonar systems) whereby individual cruise distributions can be several terabytes. Ship operators, R2R and NCEI must design a way to move and store these growing volumes. R2R is also working to make information more accessible and complete. A new website has been launched along with API web services that allow users to find and use data more easily. R2R is working to improve device metadata, including working to identify the time sources for all environmental sensors to support accurate comparison and merging of data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1006
Permanent link to this record
 

 
Author Zeng, L.; Chassignet, E.P.; Schmitt, R.W.; Xu, X.; Wang, D.
Title Salinification in the South China Sea Since Late 2012: A Reversal of the Freshening Since the 1990s Type $loc['typeJournal Article']
Year 2018 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 45 Issue 6 Pages 2744-2751
Keywords South China Sea; salinification; Argo floats; Aquarius; SMAP; PDO
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 853
Permanent link to this record
 

 
Author Smith, S.R.; Briggs, K.; Bourassa, M.A.; Elya, J.; Paver, C.R.
Title Shipboard automated meteorological and oceanographic system data archive: 2005-2017 Type $loc['typeJournal Article']
Year 2018 Publication Geoscience Data Journal Abbreviated Journal Geosci Data J
Volume 5 Issue 2 Pages 73-86
Keywords data stewardship; marine meteorology; open data access; quality control; thermosalinograph
Abstract Since 2005, the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative has been collecting, quality-evaluating, distributing, and archiving underway navigational, meteorological, and oceanographic observations from research vessels. Herein we describe the procedures for acquiring ship and instrumental metadata and the one-minute interval observations from 44 research vessels that have contributed to the SAMOS initiative from 2005 to 2017. The overall data processing workflow and quality control procedures are documented along with data file formats and version control procedures. The SAMOS data are disseminated to the user community via web, FTP, and Thematic Real-time Environmental Distributed Data Services from both the Marine Data Center at the Florida State University and the National Centers for Environmental Information, which serves as the long-term archive for the SAMOS initiative. They have been used to address topics ranging from air-sea interaction studies, the calibration, evaluation, and development of satellite observational products, the evaluation of numerical atmospheric and ocean models, and the development of new tools and techniques for geospatial data analysis in the informatics community. Maps provide users the geospatial coverage within the SAMOS dataset, with a focus on the Essential Climate/Ocean Variables, and recommendations are made regarding which versions of the dataset should be accessed by different user communities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2049-6060 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 979
Permanent link to this record
 

 
Author Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 123 Issue 8 Pages 5808-5823
Keywords Iceland; Scotland overflow water; Charlie; Gibbs fracture zone; variability; volume transport; eddying simulation
Abstract Observations show that the westward transport of the Iceland‐Scotland overflow water (ISOW) through the Charlie‐Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35‐year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large‐scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid‐Atlantic Ridge, suggesting an out‐of‐phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 952
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A.
Title Simulation of the Intraseasonal Variations of the Indian Summer Monsoon in a Regional Coupled Ocean-Atmosphere Model Type $loc['typeJournal Article']
Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 31 Issue 8 Pages 3167-3185
Keywords Asia; Indian Ocean; Mixed layer; Monsoons; Atmosphere-ocean interaction; Regional models
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 557
Permanent link to this record
 

 
Author Zhang, M.; Wu, Z.; Qiao, F.
Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 31 Issue 20 Pages 8541-8555
Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC
Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 950
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)