Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. url  doi
openurl 
  Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 76-97  
  Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth  
  Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1001  
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  openurl
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 98-113  
  Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas  
  Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1036  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A. url  doi
openurl 
  Title A coupled ocean-atmosphere downscaled climate projection for the peninsular Florida region Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Marine Systems Abbreviated Journal Journal of Marine Systems  
  Volume 194 Issue Pages 25-40  
  Keywords Climate projection; Peninsular Florida; bathymetry; climate simulation; future  
  Abstract A downscaled projection over the Peninsular Florida (PF) region is conducted with a Regional Climate Model (RCM) at 10 km grid spacing that incorporates interactive coupling between the atmosphere and ocean components of the climate system. This is first such application of a coupled ocean-atmosphere model for climate projection over the PF region. The RCM is shown to display reasonable fidelity in simulating the mean current climate and exhibits higher variability both in the ocean and in the atmosphere than the large-scale global model (Community Climate System Model version 4 [CCSM4]), which is used to drive the RCM. There are several features of the regional climate that RCM displays as an improvement over CCSM4: upper ocean thermal stratification, surface eddy kinetic energy of the ocean, volume flux through the Yucatan Channel, and terrestrial rainfall over PF. The projected mean hydroclimatic change over the period 2041�2060 relative to 1986�2005 over PF shows significant difference between RCM and CCSM4, with the RCM becoming significantly drier and CCSM4 moderately wetter. Furthermore, over the ocean surface, especially over the West Florida Shelf (WFS), RCM displays a wetter and a warmer surface climate compared to the CCSM4 simulation.

Our analysis of the model output indicates that improved resolution of ocean bathymetry in the RCM plays a significant role in the response of the projected changes in surface heat flux, clouds, upper ocean circulations and upper ocean stratification, which manifests with some of the largest differences from the CCSM4 projections, especially over the shallower parts of the ocean around PF. This contrast is most apparent between WFS and PF in the RCM simulation, which suggests that a future warm climate would likely produce more rain over WFS at the expense of corresponding reduction over PF, contrary to the absence of any such gradient in the CCSM4 simulation. Furthermore, in the RCM simulation, the warming of the sub-surface ocean in the future climate is owed to the combined influence of excess atmospheric heat flux directed towards the ocean from the atmosphere and the advective heat flux convergence with the relative slowing of the Loop Current in the future climate. The study demonstrates that such RCMs with coupled ocean-atmosphere interactions are necessary to downscale the global climate models to project the surface hydro-climate over regions like PF that have mesoscale features in the ocean, which can influence the terrestrial climate.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-7963 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1003  
Permanent link to this record
 

 
Author Stukel, M.R.; Kelly, T.B. url  doi
openurl 
  Title The carbon: (234) Thorium ratios of sinking particles in the California current ecosystem 2: Examination of a thorium sorption, desorption, and particle transport model Type $loc['typeJournal Article']
  Year 2019 Publication Marine Chemistry Abbreviated Journal Marine Chemistry  
  Volume 212 Issue Pages 1-15  
  Keywords POC concentration; sinking particles.; depth and relationship with water; phytoplankton  
  Abstract Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon: thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4203 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1002  
Permanent link to this record
 

 
Author Shropshire, T.; Morey, S. L.; Chassignet, E. P.; Bozec, A.; Coles, V.J.; Landry, M.R.; Swalethorp, R.; Zapfe, G. and Stukel, M.R. url  doi
openurl 
  Title Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical-biogeochemical model Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Zooplankton play an important role in global biogeochemistry and their secondary production supports valuable fisheries of the world's oceans. Currently, zooplankton abundances cannot be estimated using remote sensing techniques. Hence, coupled physical-biogeochemical models (PBMs) provide an important tool for studying zooplankton on regional and global scales. However, evaluating the accuracy of zooplankton abundance estimates from PBMs has been a major challenge as a result of sparse observations. In this study, we configure a PBM for the Gulf of Mexico (GoM) from 1993&#65533;2012 and validate the model against an extensive combination of in situ biomass and rate measurements including total mesozooplankton biomass, size-fractionated mesozooplankton biomass and grazing rates, microzooplankton specific grazing rates, surface chlorophyll, deep chlorophyll maximum depth, phytoplankton specific growth rates, and net primary production. Spatial variability in mesozooplankton biomass climatology observed in a multi-decadal database for the northern GoM is well resolved by the model with a statistically significant (p&#8201;<&#8201;0.01) correlation of 0.90. Mesozooplankton secondary production for the region averaged 66&#8201;+&#8201;8&#8201;mt&#8201;C&#8201;yr&#8722;1 equivalent to approximately 10&#8201;% of NPP and ranged from 51 to 82&#8201;mt&#8201;C&#8201;yr&#8722;1. In terms of diet, model results from the shelf regions suggest that herbivory is the dominant feeding mode for small mesozooplankton (<&#8201;1-mm) whereas larger mesozooplankton are primarily carnivorous. However, in open-ocean, oligotrophic regions, both groups of mesozooplankton have proportionally greater reliance on heterotrophic protists as a food source. This highlights the important role of microbial and protistan food webs in sustaining mesozooplankton biomass in the GoM which serves as the primary food source for early life stages of many commercially-important fish species, including tuna.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1095  
Permanent link to this record
 

 
Author Bashmachnikov, I.L.; Fedorov, A.M.; Vesman, A.V.; Belonenko, T.V.; Dukhovskoy, D.S. url  openurl
  Title Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: indices of intensity of deep convection Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal  
  Volume 16 Issue 1 Pages 191-201  
  Keywords deep convection, assimilation of satellite data, altimetry, water density, the Greenland Sea, the Labrador Sea, the Irminger Sea  
  Abstract Variation in locations of the maximum development of deep convection in the subpolar seas, taking into account their small dimensions, represent difficulty in identifying its interannual variability from usually sparse in situ data. In this work, the interannual variability of the maximum convection depth, is obtained using one of the most complete datasets ARMOR, which combines in situ and satellite data. The convection depths, derived from ARMOR, are used for testing the efficiency of two indices of convection intensity: (1) sea-level anomalies from satellite altimetry and (2) the integral water density in the areas of the most frequent development of deep convection. The first index, capturing some details, shows low correlations with the interannual variability of the deep convection intensity. The second index shows high correlation with the deep convection intensity in the Greenland, Irminger and Labrador seas. Asynchronous variations in the deep convection intensity in the Labrador-Irminger seas and in the Greenland Sea are obtained. In the Labrador and in the Irminger seas, the quasi-seven-year variations in the convection intensity are identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1089  
Permanent link to this record
 

 
Author Xiaobiao Xu, Eric Chassignet url  openurl
  Title Subpolar-Subtropical Connectivity of the North Atlantic Circulation Type $loc['typeMiscellaneous']
  Year 2019 Publication PHYSICAL OCEANOGRAPHY Abbreviated Journal  
  Volume Issue Pages  
  Keywords Warming, hydrographic, subtropical gyres, sub-basins, passive tracers  
  Abstract The ocean, through its large capacity to store heat, plays a critical role in Earth's climate and climate variability. Warming of the world's oceans since 1955 accounts for approximately 93% of the warming of the Earth system. However, this warming is neither spatially uniform nor temporally constant. Superimposed on the global long-term trend is climate variability on inter-annual to inter-decadal time scales and regional to basin scales. Satellite altimeters and hydrographic observations show that the North Atlantic, including the sub-polar region, has rapidly become warmer and saltier since the early 1990s. An emerging picture is that the most recent 20 years or so of warming in the North Atlantic represents, in part, a transition of the Atlantic multi-decadal variability pattern from a cold to a warm phase. These decadal climate transitions involve changes both laterally in the sub-tropical and sub-polar gyres of the North Atlantic and vertically in the Atlantic Meridional Overturning Circulation (AMOC), a key component of the global heat and freshwater circulation system. This study of the North Atlantic circulation concentrates on a transition region around the Grand Banks of Newfoundland, where the effects of boundary currents and jets, recirculations, and mesoscale eddies (length scales typically less than 100 km) are dominant. Strong interactions occur in this transition region, laterally between the subpolar and subtropical gyres and vertically between the cold and warm limbs of the Atlantic Meridional Circulation (AMOC). There is evidence that this relatively compact region plays a key role in altering and even modulating the AMOC over a much larger scale and thus is important for the long-term, decadal variability of the Atlantic Ocean. Yet, despite many observational field programs, the dynamics and impacts of this region are not well understood. The project will contribute to understanding the variability of the AMOC by addressing the connectivity of the sub-polar and the sub-tropical gyres. The results of this model-data synthesis will be of particular significance to coupled climate models, which are central to understanding and predicting global climate change. The educational/outreach components of this project will be focused on cultivating scientific literacy with regards to ocean climate research in K-12 schools, at the university level, and in the local community through a variety of online resources/interactive tools for educators, the Florida State University Young Scholars program for high school students, and the “Scientists in the Schools” program. Finally, the requested funding will support a junior faculty member and a graduate student who will be trained in ocean modeling, data analysis and interpretation.

Through ongoing major observation programs in the sub-polar and sub-tropical North Atlantic Ocean, oceanographers are making great strides toward a better understanding of the structure and variability of the AMOC within these sub-basins. The work proposed here complements these observations by focusing on key questions pertaining to what controls the circulation in between and how much the sub-polar to sub-tropical connectivity modulates the larger scale AMOC. This project aims to elucidate the physical dynamics that controls circulation in the transition region, especially the relative importance of the eddies and the deep western boundary current, and document the role and impact of the transition region on the larger scale circulation, especially the variability of the AMOC and water properties in the sub-polar and sub-tropical North Atlantic from inter-annual to decadal and longer time scales. The interaction of eddies and time mean circulations represents one of the greatest challenges to prediction of global climate variability, and it can be studied with the fine-grid resolution model included in this project. These objectives will be met by performing a detailed model-data synthesis study, combining numerical results from a suite of high-resolution Atlantic simulations using the HYbrid Coordinate Ocean Model (HYCOM) and existing observations (satellite altimetry, drifters/floats, hydrography, tracers, and mooring arrays). The three-dimensional Atlantic circulation will be quantified by performing analysis of water mass transport and transformation, passive tracers, and potential vorticity and momentum fluxes. It has been demonstrated that the eddy-resolving HYCOM represents the basic circulation features in the transition region and larger scale North Atlantic Ocean, including both time mean structure and temporal variability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1018  
Permanent link to this record
 

 
Author Zhao, X.; Zhou, C.; Xu, X.; Ye, R.; Tian, J.; Zhao, W. url  openurl
  Title Deep Circulation in the South China Sea Simulated in a Regional Model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Sci. Discuss Abbreviated Journal Ocean Sci. Discuss  
  Volume Issue Pages  
  Keywords Sea Marine, Oceanography/CIMST, PacificOcean, continuous current-meter, deep circulation, deep western boundary  
  Abstract The South China Sea (SCS) is the largest marginal sea in the northwest Pacific Ocean. In this study, deep circulation in the SCS is investigated using results from eddy-resolving, regional simulations using the Hybrid Coordinate Ocean Model (HYCOM) verified by continuous current-meter observations. Analysis of these results provides a detailed spatial structure and temporal variability of the deep circulation in the SCS. The major features of the SCS deep circulation are a basin-scale cyclonic gyre and a concentrated deep western boundary current (DWBC). Transport of the DWBC is &#8764;&#8201;2&#8201;Sv at 16.5°&#8201;N with a width of &#8764;53&#8201;km. Flowing southwestward, the narrow DWBC becomes weaker with a wider range. The model results reveal the existence of 80- to 120-day oscillation in the deep northeastern circulation and the DWBC, which are also the areas with elevated eddy kinetic energy. This intraseasonal oscillation propagates northwestward with a velocity amplitude of &#8764;&#8201;1.0 to 1.5&#8201;cm&#8201;s-1. The distribution of mixing parameters in the deep SCS plays a role in both spatial structure and volume transport of the deep circulation. Compared with the northern shelf of the SCS with the Luzon Strait, deep circulation in the SCS is more sensitive to the large vertical mixing parameters of the Zhongsha Island Chain area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1013  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title Monitoring the Indian Summer Monsoon Evolution at the Granularity of the Indian Meteorological Sub-divisions using Remotely Sensed Rainfall Products Type $loc['typeJournal Article']
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 11 Issue 9 Pages 1080  
  Keywords Indian Summer Monsoon; GPM; TRMM satellite precipitation; meteorological sub-divisions  
  Abstract We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions. View Full-Text  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1026  
Permanent link to this record
 

 
Author Zou, M.; Xiong, X.; Wu, Z.; Li, S.; Zhang, Y.; Chen, L. url  doi
openurl 
  Title Increase of Atmospheric Methane Observed from Space-Borne and Ground-Based Measurements Type $loc['typeJournal Article']
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 11 Issue 8 Pages  
  Keywords Methane increase trend; Boundary layer; Mid-upper troposphere; Satellite; AIRS  
  Abstract It has been found that the concentration of atmospheric methane (CH4) has rapidly increased since 2007 after a decade of nearly constant concentration in the atmosphere. As an important greenhouse gas, such an increase could enhance the threat of global warming. To better quantify this increasing trend, a novel statistic method, i.e. the Ensemble Empirical Mode Decomposition (EEMD) method, was used to analyze the CH4 trends from three different measurements: the mid-upper tropospheric CH4 (MUT) from the space-borne measurements by the Atmospheric Infrared Sounder (AIRS), the CH4 in the marine boundary layer (MBL) from NOAA ground-based in-situ measurements, and the column-averaged CH4 in the atmosphere (X-CH4) from the ground-based up-looking Fourier Transform Spectrometers at Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC). Comparison of the CH4 trends in the mid-upper troposphere, lower troposphere, and the column average from these three data sets shows that, overall, these trends agree well in capturing the abrupt CH4 increase in 2007 (the first peak) and an even faster increase after 2013 (the second peak) over the globe. The increased rates of CH4 in the MUT, as observed by AIRS, are overall smaller than CH4 in MBL and the column-average CH4. During 2009-2011, there was a dip in the increase rate for CH4 in MBL, and the MUT-CH4 increase rate was almost negligible in the mid-high latitude regions. The increase of the column-average CH4 also reached the minimum during 2009-2011 accordingly, suggesting that the trends of CH4 are not only impacted by the surface emission, however that they also may be impacted by other processes like transport and chemical reaction loss associated with [OH]. One advantage of the EEMD analysis is to derive the monthly rate and the results show that the frequency of the variability of CH4 increase rates in the mid-high northern latitude regions is larger than those in the tropics and southern hemisphere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1055  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)