|   | 
Details
   web
Records
Author Ajayi, A.; Le Sommer, J.; Chassignet, E.; Molines, J.-M.; Xu, X.; Albert, A.; Cosme, E.
Title Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric-Resolution Ocean Models Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 5 Pages
Keywords submesoscales; fine‐ scales; enstrophy; eddies; SWOT
Abstract Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. Nevertheless, it is well established that oceanic flows (<50 km) generally exhibit strong seasonality. In this study, we present a basin&#8208;scale analysis of coherent structures down to 10&#8201;km in the North Atlantic Ocean using two submesoscale&#8208;permitting ocean models, a NEMO&#8208;based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM&#8208;based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100&#8201;km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wave number spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10&#65533;50&#8201;km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1104
Permanent link to this record
 

 
Author Ali, M.M.
Title Is it high time to use ocean mean temperature for monsoon prediction? Type $loc['typeJournal Article']
Year 2020 Publication Atmosphera Abbreviated Journal Atmosphera
Volume Issue Pages
Keywords
Abstract A monsoon is a seasonal reversal in the prevailing wind direction, that is usually initiated by the land sea temperature contrast. The Indian summer monsoon, for example, is triggered when the land gets heated up more than the surrounding sea during the summer creating a pressure gradient between the land and the sea. It is well known that the ocean thermal energy required for fueling monsoon circulations comes from the upper layer of the ocean (e.g. Venugopal et al. 2018). But such amount of energy does not come from the top thin layer represented by sea surface temperature (SST) alone. Nevertheless, often SST does not represent the thermal energy available in the upper ocean, although this parameter has been the only oceanographic input to the cyclone and monsoon atmospheric numerical and statistical models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1116
Permanent link to this record
 

 
Author Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Farrar, J.T.; Bourassa, M.; Minnett, P.J.; Seo, H.; Gille, S.T.; Zlotnicki, V.
Title FluxSat: Measuring the Ocean-Atmosphere Turbulent Exchange of Heat and Moisture from Space Type $loc['typeJournal Article']
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 11 Pages 1796
Keywords air-sea interactions; mesoscale; fluxes
Abstract Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean-atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air-sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean-atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean-atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1111
Permanent link to this record
 

 
Author Kim, D.; Lee, S.-K.; Lopez, H.; Foltz, G.R.; Misra, V.; Kumar, A.
Title On the Role of Pacific-Atlantic SST Contrast and Associated Caribbean Sea Convection in August-October U.S. Regional Rainfall Variability Type $loc['typeJournal Article']
Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 47 Issue 11 Pages
Keywords Pacific&#8208; Atlantic SST interaction; Atlantic Warm pool; Caribbean Sea; U.S. precipitation
Abstract This study investigates the large&#8208;scale atmospheric processes that lead to U.S. precipitation variability in late summer to midfall (August–October; ASO) and shows that the well&#8208;recognized relationship between North Atlantic Subtropical High and U.S. precipitation in peak summer (June–August) significantly weakens in ASO. The working hypothesis derived from our analysis is that in ASO convective activity in the Caribbean Sea, modulated by the tropical Pacific&#8208;Atlantic sea surface temperature (SST) anomaly contrast, directly influences the North American Low&#8208;Level Jet and thus U.S. precipitation east of the Rockies, through a Gill&#8208;type response. This hypothesis derived from observations is strongly supported by a long&#8208;term climate model simulation and by a linear baroclinic atmospheric model with prescribed diabatic forcings in the Caribbean Sea. This study integrates key findings from previous studies and advances a consistent physical rationale that links the Pacific&#8208;Atlantic SST anomaly contrast, Caribbean Sea convective activity, and U.S. rainfall in ASO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1110
Permanent link to this record
 

 
Author Kranz, S.A.; Wang, S.; Kelly, T.B.; Stukel, M.R.; Goericke, R.; Landry, M.R.; Cassar, N.
Title Lagrangian Studies of Marine Production: A Multimethod Assessment of Productivity Relationships in the California Current Ecosystem Upwelling Region Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 6 Pages
Keywords gross primary production; long&#8208; term ecological research; equilibrium inlet mass spectrometry; carbon export; net community production
Abstract A multimethod process&#8208;oriented investigation of diverse productivity measures in the California Current Ecosystem (CCE) Long&#8208;Term Ecological Research study region, a complex physical environment, is presented. Seven multiday deployments covering a transition region from high to low productivity were conducted over two field expeditions (spring 2016 and summer 2017). Employing a Lagrangian study design, water parcels were followed over several days, comparing 24&#8208;h in situ measurements (14C and 15NO3 &#8208;uptake, dilution estimates of phytoplankton growth, and microzooplankton grazing) with high&#8208;resolution productivity measurements by fast repetition rate fluorometry (FRRF) and equilibrium inlet mass spectrometry (EIMS), and integrated carbon export measuremnts using sediment traps. Results show the importance of accounting for temporal and fine spatial scale variability when estimating ecosystem production. FRRF and EIMS measurements resolved diel patterns in gross primary and net community production. Diel productivity changes agreed well with comparably more traditional measurements. While differences in productivity metrics calculated over different time intervals were considerable, as those methods rely on different base assumptions, the data can be used to explain ecosystem processes which would otherwise have gone unnoticed. The processes resolved from this method comparison further understanding of temporal and spatial coupling and decoupling of surface productivity and potential carbon burial in a gradient from coastal to offshore ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1113
Permanent link to this record
 

 
Author Liu, Q.; Tan, Z-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z.
Title Changing rapid weather variability increases influenza epidemic risk in a warming climate Type $loc['typeJournal Article']
Year 2020 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters
Volume 15 Issue 4 Pages
Keywords
Abstract The continuing change of the Earth's climate is believed to affect the influenza viral activity and transmission in the coming decades. However, a consensus of the severity of the risk of influenza epidemic in a warming climate has not been reached. It was previously reported that the warmer winter can reduce influenza epidemic-caused mortality, but this relation cannot explain the deadly influenza epidemic in many countries over northern mid-latitudes in the winter of 2017-2018, one of the warmest winters in recent decades. Here we reveal that the widely spread 2017-2018 influenza epidemic can be attributed to the abnormally strong rapid weather variability. We demonstrate, from historical data, that the large rapid weather variability in autumn can precondition the deadly influenza epidemic in the subsequent months in highly populated northern mid-latitudes; and the influenza epidemic season of 2017-2018 was a typical case. We further show that climate model projections reach a consensus that the rapid weather variability in autumn will continue to strengthen in some regions of northern mid-latitudes in a warming climate, implying that the risk of influenza epidemic may increase 20% to 50% in some highly populated regions in later 21st century.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1070
Permanent link to this record
 

 
Author Magar, V.; Godínez, V.M.; Gross, M.S.; López-Mariscal, M.; Bermúdez-Romero, A.; Candela, J.; and Zamudio, L.
Title In-stream Energy by Tidal and Wind-driven Currents: An Analysis for the Gulf of California Type $loc['typeJournal Article']
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1101
Permanent link to this record
 

 
Author Mende, M.; Misra, V.
Title Time to Flatten the Curves on COVID-19 and Climate Change. Marketing Can Help Type $loc['typeJournal Article']
Year 2020 Publication Journal of Public Policy & Marketing Abbreviated Journal Journal of Public Policy & Marketing
Volume Issue Pages
Keywords
Abstract The health, economic, and social impact of the COVID-19 pandemic is unprecedented in our lifetime, and no individual in this globalized, interconnected world is immune from its effects. This pandemic is a fundamental challenge for consumers, companies, and governments. Against this background, our commentary underscores linkages between public health, environment, and economy and explores how lessons from COVID-19 can help prevent other large-scale disasters.1 We focus on global climate change (GCC), because rising temperatures increase the likelihood of future pandemics.2 Accordingly, experts consider GCC “the largest public health threat of the century” (Wyns 2020). Although societal crises are underresearched in marketing, we propose that marketers should add their expertise to help avoid future crises. Notably, the Journal of Public Policy & Marketing (JPP&M) is uniquely positioned as a premier outlet for corresponding research at the intersection of marketing and policy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1117
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A.
Title The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures Type $loc['typeJournal Article']
Year 2020 Publication Atmospheric Science Letters Abbreviated Journal Atmos Sci Lett
Volume 21 Issue 3 Pages 9658-9689
Keywords
Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-261X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1100
Permanent link to this record
 

 
Author Neto, A.G.; Palter, J.; Bower, A.; Furey, H.; Xu. X.
Title Labrador Sea Water transport across the Charlie-Gibbs Fracture Zone Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume Accepted Issue Pages
Keywords
Abstract Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid&#8208;Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25&#8208;year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993&#8208;2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1108
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)