Ansong, J. K., Arbic, B. K., Simmons, H. L., Alford, M. H., Buijsman, M. C., Timko, P. G., et al. (2018). Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model. J. Phys. Oceanogr., 48(6), 1409–1431.
Abstract: The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%–10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.


Arbic, B. K., Shriver, J. F., Hogan, P. J., Hurlburt, H. E., McClean, J. L., Metzger, E. J., et al. (2009). Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global highresolution models. J. Geophys. Res., 114(C2).


Yu, P. (2006). Development of New Techniques for Assimilating Satellite Altimetry Data into Ocean Models. Ph.D. thesis, Florida State University, Tallahassee, FL.
Abstract: State of the art fully threedimensional ocean models are very computationally expensive and their adjoints are even more resource intensive. However, many features of interest are approximated by the first baroclinic mode over much of the ocean, especially in the lower and mid latitude regions. Based on this dynamical feature, a new type of data assimilation scheme to assimilate sea surface height (SSH) data, a reducedspace adjoint technique, is developed and implemented with a threedimensional model using vertical normal mode decomposition. The technique is tested with the Navy Coastal Ocean Model (NCOM) configured to simulate the Gulf of Mexico. The assimilation procedure works by minimizing the cost function, which generalizes the misfit between the observations and their counterpart model variables. The “forward” model is integrated for the period during which the data are assimilated. Vertical normal mode decomposition retrieves the first baroclinic mode, and the data misfit between the model outputs and observations is calculated. Adjoint equations based on a oneactivelayer reduced gravity model, which approximates the first baroclinic mode, are integrated backward in time to get the gradient of the cost function with respect to the control variables (velocity and SSH of the first baroclinic mode). The gradient is input to an optimization algorithm (the limited memory BroydenFletcherGoldfarbShanno (BFGS) method is used for the cases presented here) to determine the new first baroclinic mode velocity and SSH fields, which are used to update the forward model variables at the initial time. Two main issues in the area of ocean data assimilation are addressed: 1. How can information provided only at the sea surface be transferred dynamically into deep layers? 2. How can information provided only locally, in limited oceanic regions, be horizontally transferred to ocean areas far away from the datadense regions, but dynamically connected to it? The first problem is solved by the use of vertical normal mode decomposition, through which the vertical dependence of model variables is obtained. Analyses show that the first baroclinic mode SSH represents the full SSH field very closely in the model test domain, with a correlation of 93% in one of the experiments. One common way to solve the second issue is to lengthen the assimilation window in order to allow the dynamic model to propagate information to the datasparse regions. However, this dramatically increases the computational cost, since many oceanic features move very slowly. An alternative solution to this is developed using a mapping method based on complex empirical orthogonal functions (EOF), which utilizes data from a much longer period than the assimilation cycle and deals with the information in space and time simultaneously. This method is applied to map satellite altimeter data from the ground track observation locations and times onto a regular spatial and temporal grid. Three different experiments are designed for testing the assimilation technique: two experiments assimilate SSH data produced from a model run to evaluate the method, and in the last experiment the technique is applied to TOPEX/Poseidon and Jason1 altimeter data. The assimilation procedure converges in all experiments and reduces the error in the model fields. Since the adjoint, or “backward”, model is twodimensional, the method is much more computationally efficient than if it were to use a fully threedimensional backward model.


Arbic, B. K., Wallcraft, A. J., & Metzger, E. J. (2010). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(34), 175–187.


Smith, S. R., Briggs, K., Lopez, N., & Kourafalou, V. (2016). Applying Automated Underway Ship Observations to Numerical Model Evaluation. J. Atmos. Oceanic Technol., 33(3), 409–428.

