Ali, A., Christensen, K. H., Breivik, Ø., Malila, M., Raj, R. P., Bertino, L., et al. (2019). A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Modelling, 137, 76–97.
Abstract: Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.
|
Ali, M. M., Nagamani, P. V., Sharma, N., Venu Gopal, R. T., Rajeevan, M., Goni, G. J., et al. (2015). Relationship between ocean mean temperatures and Indian summer monsoon rainfall. Atmos. Sci. Lett., 16(3), 408–413.
|
Armstrong, E. M., Bourassa, M. A., Cram, T., Elya, J. L., Greguska, F. R., III, Huang, T., et al. (2018). An information technology foundation for fostering interdisciplinary oceanographic research and analysis. In American Geophysical Union (Vol. Fall Meeting).
Abstract: Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses.
|
Arruda, W. Z., Campos, E. J. D., Zharkov, V., Soutelino, R. G., & da Silveira, I. C. A. (2013). Events of equatorward translation of the Vitoria Eddy. Continental Shelf Research, 70, 61–73.
|
Baigorria, G., Jones, J., Shin, D., Mishra, A., & Ingram, K. T., Jones, J. W., O'Brien, J. J., Roncoli, M. C., Fraisse, C., Breuer, N. E., Bartels, W.-L., Zierden, D. F., Letson, D. (2007). Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Clim. Res., 34, 211–222.
|
Bastola, S., & Misra, V. (2015). Seasonal hydrological and nutrient loading forecasts for watersheds over the Southeastern United States. Environmental Modelling & Software, 73, 90–102.
|
Bastola, S., Misra, V., & Li, H. (2013). Seasonal Hydrological Forecasts for Watersheds over the Southeastern United States for the Boreal Summer and Fall Seasons. Earth Interact., 17(25), 1–22.
|
Bhardwaj, A., & Misra, V. (2019). The role of air-sea coupling in the downscaled hydroclimate projection over Peninsular Florida and the West Florida Shelf. Climate Dynamics, , 1–17.
Abstract: A comparative analysis of two sets of downscaled simulations of the current climate and the future climate projections over Peninsular Florida (PF) and the West Florida Shelf (WFS) is presented to isolate the role of high-resolution air-sea coupling. In addition, the downscaled integrations are also compared with the much coarser, driving global model projection to examine the impact of grid resolution of the models. The WFS region is habitat for significant marine resources, which has both commercial and recreational value. Additionally, the hydroclimatic features of the WFS and PF contrast each other. For example, the seasonal cycle of surface evaporation in these two regions are opposite in phase to one another. In this study, we downscale the Community Climate System Model version 4 (CCSM4) simulations of the late twentieth century and the mid-twenty-first century (with reference concentration pathway 8.5 emission scenario) using an atmosphere only Regional Spectral Model (RSM) at 10 km grid resolution. In another set, we downscale the same set of CCSM4 simulations using the coupled RSM-Regional Ocean Model System (RSMROMS) at 10 km grid resolution. The comparison of the twentieth century simulations suggest significant changes to the SST simulation over WFS from RSMROMS relative to CCSM4, with the former reducing the systematic errors of the seasonal mean SST over all seasons except in the boreal summer season. It may be noted that owing to the coarse resolution of CCSM4, the comparatively shallow bathymetry of the WFS and the sharp coastline along PF is poorly defined, which is significantly rectified at 10 km grid spacing in RSMROMS. The seasonal hydroclimate over PF and the WFS in the twentieth century simulation show significant bias in all three models with CCSM4 showing the least for a majority of the seasons, except in the wet June-July-August (JJA) season. In the JJA season, the errors of the surface hydroclimate over PF is the least in RSMROMS. The systematic errors of surface precipitation and evaporation are more comparable between the simulations of CCSM4 and RSMROMS, while they differ the most in moisture flux convergence. However, there is considerable improvement in RSMROMS compared to RSM simulations in terms of the seasonal bias of the hydroclimate over WFS and PF in all seasons of the year. This suggests the potential rectification impact of air-sea coupling on dynamic downscaling of CCSM4 twentieth century simulations. In terms of the climate projection in the decades of 2041-2060, the RSMROMS simulation indicate significant drying of the wet season over PF compared to moderate drying in CCSM4 and insignificant changes in the RSM projection. This contrasting projection is also associated with projected warming of SSTs along the WFS in RSMROMS as opposed to warming patterns of SST that is more zonal and across the WFS in CCSM4.
|
Bourassa, M. A., & Weissman, D. E. (2003). The development and application of a sea surface stress model function for the QuikSCAT and ADEOS-II SeaWinds scatterometers. In IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) (pp. 239–241).
|
Bourassa, M. A., Legler, D. M., O'Brien, J. J., & Smith, S. R. (2003). SeaWinds validation with research vessels. J. Geophys. Res., 108(C2).
|