Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maue, R. N. url  openurl
  Title Evolution of Frontal Structure Associated with Extratropical Transitioning Hurricanes Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Extratropical Transition, Frontogenesis, Fronts, Quikscat, Cyclone Lifecycles, Warm Seclusion, Frontal Fracture, Potential Vorticity, Hurricane Kate, Hurricane Irene, Hurricane Fabian, Tropical Cyclones  
  Abstract Many tropical cyclones move poleward, encounter vertical shear associated with the midlatitude circulation, and undergo a process called extratropical transition (ET). One of the many factors affecting the post-transition extratropical storm in terms of reintensification, frontal structure, and overall evolution is the upper-level flow pattern. Schultz et al. (1998) categorized extratropical cyclones according to two of the many possible cyclone paradigms in terms of the upper-level trough configuration: The Norwegian cyclone model (Bjerknes and Solberg 1922) associated with high-amplitude diffluent trough flow and the Shapiro-Keyser cyclone lifecycle (1990) with low-amplitude confluent troughs. Broadly speaking, the former category is associated with a strong, meridionally oriented cold front with a weak warm front while the latter lifecycle usually entails a prominent, zonally oriented warm front. However, as will be shown, simple antipode lifecycle definitions fail to capture hybrid or cross-lifecycle evolution of transitioned tropical cyclones. To exemplify the importance upper-level features such as jet streaks and troughs, a potential vorticity framework is coupled with vector frontogenesis functions to diagnose the interaction between the poleward transitioning cyclone and the midlatitude circulation. Particular focus is concentrated upon the evolution and strength of frontal fracture from both a PV and frontogenesis viewpoint. The final outcome of extratropical transition is highly variable depending on characteristics of the tropical cyclone, SSTs, and environmental factors such as strength of vertical shear. Here, three storms (Irene 1999, Fabian 2003, and Kate 2003) typify the inherent variability of one such ET outcome, warm seclusion. Very strong winds are often observed in excess of 50 ms-1 along the southwestern flank of the storm down the bent-back warm front. The low-level wind field kinematics are examined using vector frontogenesis functions and QuikSCAT winds. A complex empirical orthogonal function (CEOF) technique is adapted to temporally interpolate ECMWF model fields (T, MSLP) to overpass times of the scatterometer, an improvement over simple linear interpolation. Overall, the above diagnosis is used to support a hypothesis concerning the prevalence of hurricane-force winds surrounding secluded systems.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 625  
Permanent link to this record
 

 
Author Xu, X.; Rhines, P.B.; Chassignet, E.P. url  doi
openurl 
  Title On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 10 Pages 2233-2258  
  Keywords Atmosphere-ocean interaction; Boundary currents; Diapycnal mixing; Fronts; Thermocline circulation  
  Abstract Diapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly focused on the transformation that is forced by surface buoyancy fluxes, and the role of interior mixing is much less known. This study maps the three-dimensional structure of the diapycnal transformation, both surface forced and mixing induced, using results of a high-resolution numerical model that have been shown to represent the large-scale structure of the AMOC and the North Atlantic subpolar/subtropical gyres well. The analyses show that 1) annual mean transformation takes place seamlessly from the subtropical to the subpolar North Atlantic following the surface buoyancy loss along the northward-flowing upper AMOC limb; 2) mixing, including wintertime convection and warm-season restratification by mesoscale eddies in the mixed layer and submixed layer diapycnal mixing, drives transformations of (i) Subtropical Mode Water in the southern part of the subtropical gyre and (ii) Labrador Sea Water in the Labrador Sea and on its southward path in the western Newfoundland Basin; and 3) patterns of diapycnal transformations toward lighter and denser water do not align zonally�the net three-dimensional transformation is significantly stronger than the zonally integrated, two-dimensional AMOC streamfunction (50% in the southern subtropical North Atlantic and 60% in the western subpolar North Atlantic).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 951  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)