Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Kranz, S.A.; Wang, S.; Kelly, T.B.; Stukel, M.R.; Goericke, R.; Landry, M.R.; Cassar, N. url  doi
openurl 
  Title Lagrangian Studies of Marine Production: A Multimethod Assessment of Productivity Relationships in the California Current Ecosystem Upwelling Region Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 125 Issue 6 Pages  
  Keywords gross primary production; long‐ term ecological research; equilibrium inlet mass spectrometry; carbon export; net community production  
  Abstract A multimethod process‐oriented investigation of diverse productivity measures in the California Current Ecosystem (CCE) Long‐Term Ecological Research study region, a complex physical environment, is presented. Seven multiday deployments covering a transition region from high to low productivity were conducted over two field expeditions (spring 2016 and summer 2017). Employing a Lagrangian study design, water parcels were followed over several days, comparing 24‐h in situ measurements (14C and 15NO3 ‐uptake, dilution estimates of phytoplankton growth, and microzooplankton grazing) with high‐resolution productivity measurements by fast repetition rate fluorometry (FRRF) and equilibrium inlet mass spectrometry (EIMS), and integrated carbon export measuremnts using sediment traps. Results show the importance of accounting for temporal and fine spatial scale variability when estimating ecosystem production. FRRF and EIMS measurements resolved diel patterns in gross primary and net community production. Diel productivity changes agreed well with comparably more traditional measurements. While differences in productivity metrics calculated over different time intervals were considerable, as those methods rely on different base assumptions, the data can be used to explain ecosystem processes which would otherwise have gone unnoticed. The processes resolved from this method comparison further understanding of temporal and spatial coupling and decoupling of surface productivity and potential carbon burial in a gradient from coastal to offshore ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1113  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)