Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Cocke, S.; Boisserie, M.; Shin, D.-W. url  doi
openurl 
  Title A coupled soil moisture initialization scheme for the FSU/COAPS climate model Type $loc['typeJournal Article']
  Year 2013 Publication Inverse Problems in Science and Engineering Abbreviated Journal Inverse Problems in Science and Engineering  
  Volume 21 Issue 3 Pages 420-437  
  Keywords soil moisture initialization; data assimilation; precipitation assimilation; nudging; reanalysis  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1741-5977 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 199  
Permanent link to this record
 

 
Author Powell, M. url  openurl
  Title ), Observing and Analyzing the Near-Surface Wind Field in Tropical Cyclones Type $loc['typeBook Chapter']
  Year 2010 Publication Global Perspectives on Tropical Cyclones: From Science to Mitigation Abbreviated Journal  
  Volume Issue Pages 177-199  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Scientific Place of Publication Editor Chan, JCL; Kepert, JD  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 376  
Permanent link to this record
 

 
Author Wang, S.; Kranz, S.A.; Kelly, T.B.; Song, H.; Stukel, M.R.; Cassar, N. url  doi
openurl 
  Title Lagrangian Studies of Net Community Production: The Effect of Diel and Multiday Nonsteady State Factors and Vertical Fluxes on O2/Ar in a Dynamic Upwelling Region Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.  
  Volume 125 Issue 6 Pages e2019JG005569  
  Keywords net community production; O2/Ar; California Current Ecosystem; Lagrangian measurements; vertical fluxes; nonsteady state  
  Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a �worst‐case� field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-8953 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1114  
Permanent link to this record
 

 
Author Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D. url  doi
openurl 
  Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
  Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal  
  Volume Issue Pages  
  Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae  
  Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['yes']  
  Call Number COAPS @ user @ Serial 967  
Permanent link to this record
 

 
Author Bruno-Piverger, R.E. url  openurl
  Title Applying Neural Networks to Simulate Visual Inspection of Observational Weather Data Type $loc['typeJournal Article']
  Year 2019 Publication Florida State University College of Arts and Sciences, Master's Thesis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1090  
Permanent link to this record
 

 
Author Weissman, DE; Morey, S; Bourassa, M url  doi
openurl 
  Title Studies of the effects of rain on the performance of the SMAP radiometer surface salinity estimates and applications to remote sensing of river plumes Type $loc['typeConference Article']
  Year 2017 Publication IEEE International Symposium on Geoscience and Remote Sensing IGARSS Abbreviated Journal  
  Volume Issue Pages 1491-1494  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 834  
Permanent link to this record
 

 
Author Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. url  doi
openurl 
  Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
  Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews  
  Volume 192 Issue Pages 282-299  
  Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE  
  Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-3791 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 971  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures Type $loc['typeJournal Article']
  Year 2020 Publication Atmospheric Science Letters Abbreviated Journal Atmos Sci Lett  
  Volume 21 Issue 3 Pages 9658-9689  
  Keywords  
  Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-261X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1100  
Permanent link to this record
 

 
Author Ahern, Kyle K. url  openurl
  Title Hurricane Boundary Layer Structure during Intensity Change: An Observational and Numerical Analysis Type $loc['typeManuscript']
  Year 2019 Publication Florida State University College of Arts and Sciences Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1103  
Permanent link to this record
 

 
Author Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; Griffies, S.M.; Hallberg, R.W.; Hanert, E.; Heimbach, P.; Hewitt, H.T.; Hill, C.N.; Komuro, Y.; Legg, S.; Le Sommer, J.; Masina, S.; Marsland, S.J.; Penny, S.G.; Qiao, F.; Ringler, T.D.; Treguier, A.M.; Tsujino, H.; Uotila, P.; Yeager, S.G. url  doi
openurl 
  Title Challenges and Prospects in Ocean Circulation Models Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords Southern Ocean; Overturning Circulation: Regional sea level; submesoscale; ice shelves; turbulence  
  Abstract We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1011  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)