Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bruno-Piverger, R.E. url  openurl
  Title Applying Neural Networks to Simulate Visual Inspection of Observational Weather Data Type $loc['typeJournal Article']
  Year 2019 Publication Florida State University College of Arts and Sciences, Master's Thesis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1090  
Permanent link to this record
 

 
Author (up) Carstens, J url  openurl
  Title Tropical Cyclogenesis from Self-aggregated Convection in Numerical Simulations of Rotating Radiative-convective Equilibrium Type $loc['typeManuscript']
  Year 2019 Publication Dissertations & Theses Abbreviated Journal Dissertations & Theses  
  Volume Issue Pages  
  Keywords  
  Abstract Organized convection is of critical importance in the tropical atmosphere. Recent advances in numerical modeling have revealed that moist convection can interact with its environment to transition from a quasi-random to organized state. This phenomenon, known as convective self-aggregation,is aided by feedbacks involving clouds, water vapor, and radiation that increase the spatial variance of column-integrated frozen moist static energy. Prior studies have shown self-aggregation to takeseveral different forms, including that of spontaneous tropical cyclogenesis in an environment of rotating radiative-convective equilibrium (RCE). This study expands upon previous work to address the processes leading to tropical cyclogenesis in this rotating RCE framework. More specifically,a three-dimensional, cloud-resolving numerical model is used to examine the self-aggregation of convection and potential cyclogenesis, and the background planetary vorticity is varied on an f-plane across simulations to represent a range of deep tropical and near-equatorial environments.Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic-scale forcing.All simulations with planetary vorticity corresponding to latitudes from 10°to 20°generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five-member ensemble of 20°simulations, reflecting a potential degree of stochastic variability based in part on the initial random distribution of convection. Shared across this so-called “high-f” group is the emergence of a midlevel vortex in the days leading to genesis,which has dynamic and thermodynamic implications on its environment that facilitate the spinup of a low-level vortex. Tropical cyclogenesis is possible in this model even at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self-aggregates into a quasi-circular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by near-surface inflow and shallow overturning radial circulations aloft within the aggregated cluster. Other experiments at these lower Coriolis parameters instead self-aggregate into an elongated band and fail to undergo cyclogenesis over the 100-day simulation. A large portion of this study is devoted to examining in greater detail the dynamic and thermodynamic evolution of cyclogenesis in these experiments and comparing the physical mechanisms to current theories.  
  Address  
  Corporate Author Thesis  
  Publisher Florida State University - FCLA; ProQuest Dissertations & Theses Global Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1054  
Permanent link to this record
 

 
Author (up) Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.W.; Farrar, J.T.; Gille, S.T.; Gulev, S.; Josey, S.A.; Kato, S.; Katsumata, M.; Kent, E.; Krug, M.; Minnett, P.J.; Parfitt, R.; Pinker, R.T.; Stackhouse Jr., P.W.; Swart, S.; Tomita, H.; Vandemark, D.; Weller, A.R.; Yoneyama, K.; Yu, L.; Zhang, D. url  doi
openurl 
  Title Air-Sea Fluxes With a Focus on Heat and Momentum Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1067  
Permanent link to this record
 

 
Author (up) Davidson, F.; Alvera-Azcárate, A.; Barth, A.; Brassington, G.B.; Chassignet, E.P.; Clementi, E.; De Mey-Frémaux, P.; Divakaran, P.; Harris, C.; Hernandez, F.; Hogan, P.; Hole, L.R.; Holt, J.; Liu, G.; Lu, Y.; Lorente, P.; Maksymczuk, J.; Martin, M.; Mehra, A.; Melsom, A.; Mo, H.; Moore, A.; Oddo, P.; Pascual, A.; Pequignet, A.-C.; Kourafalou, V.; Ryan, A.; Siddorn, J.; Smith, G.; Spindler, D.; Spindler, T.; Stanev, E.V.; Staneva, J.; Storto, A.; Tanajura, C.; Vinayachandran, P.N.; Wan, L.; Wang, H.; Zhang, Y.; Zhu, X.; Zu, Z. url  doi
openurl 
  Title Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract Operational oceanography can be described as the provision of routine oceanographic information needed for decision-making purposes. It is dependent upon sustained research and development through the end-to-end framework of an operational service, from observation collection to delivery mechanisms. The core components of operational oceanographic systems are a multi-platform observation network, a data management system, a data assimilative prediction system, and a dissemination/accessibility system. These are interdependent, necessitating communication and exchange between them, and together provide the mechanism through which a clear picture of ocean conditions, in the past, present, and future, can be seen. Ocean observations play a critical role in all aspects of operational oceanography, not only for assimilation but as part of the research cycle, and for verification and validation of products. Data assimilative prediction systems are advancing at a fast pace, in tandem with improved science and the growth in computing power. To make best use of the system capability these advances would be matched by equivalent advances in operational observation coverage. This synergy between the prediction and observation systems underpins the quality of products available to stakeholders, and justifies the need for sustained ocean observations. In this white paper, the components of an operational oceanographic system are described, highlighting the critical role of ocean observations, and how the operational systems will evolve over the next decade to improve the characterization of ocean conditions, including at finer spatial and temporal scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1083  
Permanent link to this record
 

 
Author (up) Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. doi  openurl
  Title Data concerning statistical relation between obliquity and Dansgaard-Oeschger events Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal Data Brief  
  Volume 23 Issue Pages  
  Keywords Dansgaard-Oeschger events; Obliquity; Surrogate data; Time-varying Shannon entropy  
  Abstract Data presented are related to the research article entitled “Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity” (J. Deng et al., 2018). The datasets in Deng et al. (2018) are analyzed on the foundation of ensemble empirical mode decomposition (EEMD) (Z.H. Wu and N.E. Huang, 2009), and reveal more occurrences of Dansgaard-Oeschger (DO) events in the decreasing phase of obliquity. Here, we report the number of significant high Shannon entropy (SE) (C.E. Shannon and W. Weaver, 1949) of 95% significance level of DO events in the increasing and decreasing phases of obliquity, respectively. First, the proxy time series are filtered by EEMD to obtain DO events. Then, the time-varying SE of DO modes are calculated on the basis of principle of histogram. The 95% significance level is evaluated through surrogate data (T. Schreiber and A. Schmitz, 1996). Finally, a comparison between the numbers of SE values that are larger than 95% significance level in the increasing and decreasing phases of obliquity, respectively, is reported.  
  Address Key Laboratory of Marine Sciences and Numerical Modelling, Ministry of Natural Resources, Qingdao 266061, PR China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-3409 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('1372394'); strtoupper('P').strtolower('MC6660458') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1068  
Permanent link to this record
 

 
Author (up) Domingues, R.; Kuwano-Yoshida, A.; Chardon-Maldonado, P.; Todd, R.E.; Halliwell, G.; Kim, H.-S.; Lin, I.-I.; Sato, K.; Narazaki, T.; Shay, L.K.; Miles, T.; Glenn, S.; Zhang, J.A.; Jayne, S.R.; Centurioni, L.; Le Hénaff, M.; Foltz, G.R.; Bringas, F.; Ali, M.M.; DiMarco, S.F.; Hosoda, S.; Fukuoka, T.; LaCour, B.; Mehra, A.; Sanabia, E.R.; Gyakum, J.R.; Dong, J.; Knaff, J.A.; Goni, G. url  doi
openurl 
  Title Ocean Observations in Support of Studies and Forecasts of Tropical and Extratropical Cyclones Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 446  
  Keywords  
  Abstract Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1043  
Permanent link to this record
 

 
Author (up) Dukhovskoy, D.S.; Yashayaev, I.; Proshutinsky, A.; Bamber, J.L.; Bashmachnikov, I.L.; Chassignet, E.P.; Lee, C.M.; Tedstone, A.J. url  doi
openurl 
  Title Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 124 Issue 5 Pages 3333-3360  
  Keywords Greenland ice sheet melting; freshwater anomaly; subpolar North Atlantic; subpolar gyre; passive tracer numerical experiment; freshwater budget  
  Abstract The cumulative Greenland freshwater flux anomaly has exceeded 5000 km3 since the 1990s. The volume of this surplus fresh water is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveal freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50�100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of fresh water have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1029  
Permanent link to this record
 

 
Author (up) Fender, C.K.; Kelly, T.B.; Guidi, L.; Ohman, M.D.; Smith, M.C.; Stukel, M.R. url  doi
openurl 
  Title Investigating Particle Size-Flux Relationships and the Biological Pump Across a Range of Plankton Ecosystem States From Coastal to Oligotrophic Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1074  
Permanent link to this record
 

 
Author (up) Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; Griffies, S.M.; Hallberg, R.W.; Hanert, E.; Heimbach, P.; Hewitt, H.T.; Hill, C.N.; Komuro, Y.; Legg, S.; Le Sommer, J.; Masina, S.; Marsland, S.J.; Penny, S.G.; Qiao, F.; Ringler, T.D.; Treguier, A.M.; Tsujino, H.; Uotila, P.; Yeager, S.G. url  doi
openurl 
  Title Challenges and Prospects in Ocean Circulation Models Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords Southern Ocean; Overturning Circulation: Regional sea level; submesoscale; ice shelves; turbulence  
  Abstract We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1011  
Permanent link to this record
 

 
Author (up) Freeman, E.; Kent, E.C.; Brohan, P.; Cram, T.; Gates, L.; Huang, B.; Liu, C.; Smith, S.R.; Worley, S.J.; Zhang, H.-M. url  doi
openurl 
  Title The International Comprehensive Ocean-Atmosphere Data Set – Meeting Users Needs and Future Priorities Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 435  
  Keywords  
  Abstract The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is a collection and archive of in situ marine observations, which has been developed over several decades as an international project and recently guided by formal international partnerships and the ICOADS Steering Committee. ICOADS contains observations from many different observing systems encompassing the evolution of measurement technology since the 18th century. ICOADS provides an integrated source of observations for a range of applications including research and climate monitoring, and forms the main marine in situ surface data source, e.g., near-surface ocean observations and lower atmospheric marine-meteorological observations from buoys, ships, coastal stations, and oceanographic sensors, for oceanic and atmospheric research and reanalysis. ICOADS has developed ways to incorporate user and reanalyses feedback information associated with permanent unique identifiers and is also the main repository for data that have been rescued from ships’ logbooks and other marine data digitization activities. ICOADS has been adopted widely because it provides convenient access to a range of observation types, globally, and through the entire marine instrumental record. ICOADS has provided a secure home for such observations for decades. Because of the increased volume of observations, particularly those available in near-real-time, and an expansion of their diversity, the ICOADS processing system now requires extensive modernization. Based on user feedback, we will outline the improvements that are required, the challenges to their implementation, and the benefits of upgrading this important and diverse marine archive and distribution activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1041  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)